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Preface

The following course is intended to give, in as simple a way as
possible, the essentials of synthetic projective geometry. While,
in the main, the theory is developed along the well-beaten track
laid out by the great masters of the subject, it is believed that
there has been a slight smoothing of the road in some places.
Especially will this be observed in the chapter on Involution.
The author has never felt satisfied with the usual treatment of
that subject by means of circles and anharmonic ratios. A purely
projective notion ought not to be based on metrical foundations.
Metrical developments should be made there, as elsewhere in the
theory, by the introduction of infinitely distant elements.

The author has departed from the century-old custom of
writing in parallel columns each theorem and its dual. He has not
found that it conduces to sharpness of vision to try to focus his
eyes on two things at once. Those who prefer the usual method
of procedure can, of course, develop the two sets of theorems
side by side; the author has not found this the better plan in actual
teaching.

As regards nomenclature, the author has followed the lead of
the earlier writers in English, and has called the system of lines
in a plane which all pass through a point apencil of raysinstead
of a bundle of rays, as later writers seem inclined to do. For a
point considered as made up of all the lines and planes through it[iv]

he has ventured to use the termpoint system, as being the natural
dualization of the usual termplane system. He has also rejected
the termfoci of an involution, and has not used the customary
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terms for classifying involutions—hyperbolic involution, elliptic
involutionandparabolic involution. He has found that all these
terms are very confusing to the student, who inevitably tries to
connect them in some way with the conic sections.

Enough examples have been provided to give the student a
clear grasp of the theory. Many are of sufficient generality
to serve as a basis for individual investigation on the part of
the student. Thus, the third example at the end of the first
chapter will be found to be very fruitful in interesting results.
A correspondence is there indicated between lines in space and
circles through a fixed point in space. If the student will trace a
few of the consequences of that correspondence, and determine
what configurations of circles correspond to intersecting lines,
to lines in a plane, to lines of a plane pencil, to lines cutting
three skew lines, etc., he will have acquired no little practice in
picturing to himself figures in space.

The writer has not followed the usual practice of inserting
historical notes at the foot of the page, and has tried instead, in
the last chapter, to give a consecutive account of the history of
pure geometry, or, at least, of as much of it as the student will
be able to appreciate who has mastered the course as given in
the preceding chapters. One is not apt to get a very wide view
of the history of a subject by reading a hundred biographical[v]

footnotes, arranged in no sort of sequence. The writer, moreover,
feels that the proper time to learn the history of a subject is after
the student has some general ideas of the subject itself.

The course is not intended to furnish an illustration of how a
subject may be developed, from the smallest possible number of
fundamental assumptions. The author is aware of the importance
of work of this sort, but he does not believe it is possible at
the present time to write a book along such lines which shall be
of much use for elementary students. For the purposes of this
course the student should have a thorough grounding in ordinary
elementary geometry so far as to include the study of the circle



Preface vii

and of similar triangles. No solid geometry is needed beyond the
little used in the proof of Desargues' theorem (25), and, except in
certain metrical developments of the general theory, there will be
no call for a knowledge of trigonometry or analytical geometry.
Naturally the student who is equipped with these subjects as well
as with the calculus will be a little more mature, and may be
expected to follow the course all the more easily. The author
has had no difficulty, however, in presenting it to students in the
freshman class at the University of California.

The subject of synthetic projective geometry is, in the opinion
of the writer, destined shortly to force its way down into the
secondary schools; and if this little book helps to accelerate the
movement, he will feel amply repaid for the task of working the
materials into a form available for such schools as well as for the
lower classes in the university. [vi]

The material for the course has been drawn from many sources.
The author is chiefly indebted to the classical works of Reye,
Cremona, Steiner, Poncelet, and Von Staudt. Acknowledgments
and thanks are also due to Professor Walter C. Eells, of the U.S.
Naval Academy at Annapolis, for his searching examination
and keen criticism of the manuscript; also to Professor Herbert
Ellsworth Slaught, of The University of Chicago, for his many
valuable suggestions, and to Professor B. M. Woods and Dr. H.
N. Wright, of the University of California, who have tried out
the methods of presentation, in their own classes.

D. N. LEHMER
BERKELEY, CALIFORNIA
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CHAPTER I - ONE-TO-ONE
CORRESPONDENCE

1. Definition of one-to-one correspondence.Given any two
sets of individuals, if it is possible to set up such a correspondence
between the two sets that to any individual in one set corresponds
one and only one individual in the other, then the two sets are said
to be inone-to-one correspondencewith each other. This notion,
simple as it is, is of fundamental importance in all branches of
science. The process of counting is nothing but a setting up of a
one-to-one correspondence between the objects to be counted and
certain words, 'one,' 'two,' 'three,' etc., in the mind. Many savage
peoples have discovered no better method of counting than by
setting up a one-to-one correspondence between the objects to
be counted and their fingers. The scientist who busies himself
with naming and classifying the objects of nature is only setting
up a one-to-one correspondence between the objects and certain
words which serve, not as a means of counting the objects, but[2]

of listing them in a convenient way. Thus he may be able to
marshal and array his material in such a way as to bring to light
relations that may exist between the objects themselves. Indeed,
the whole notion of language springs from this idea of one-to-one
correspondence.
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2. Consequences of one-to-one correspondence.The most
useful and interesting problem that may arise in connection with
any one-to-one correspondence is to determine just what relations
existing between the individuals of one assemblage may be
carried over to another assemblage in one-to-one correspondence
with it. It is a favorite error to assume that whatever holds for
one set must also hold for the other. Magicians are apt to assign
magic properties to many of the words and symbols which they
are in the habit of using, and scientists are constantly confusing
objective things with the subjective formulas for them. After the
physicist has set up correspondences between physical facts and
mathematical formulas, the "interpretation" of these formulas is
his most important and difficult task.

3. In mathematics, effort is constantly being made to set up
one-to-one correspondences between simple notions and more
complicated ones, or between the well-explored fields of research
and fields less known. Thus, by means of the mechanism
employed in analytic geometry, algebraic theorems are made to
yield geometric ones, and vice versa. In geometry we get at the
properties of the conic sections by means of the properties of
the straight line, and cubic surfaces are studied by means of the
plane.[3]

4. One-to-one correspondence and enumeration.If a one-
to-one correspondence has been set up between the objects of
one set and the objects of another set, then the inference may
usually be drawn that they have the same number of elements. If,
however, there is an infinite number of individuals in each of the
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FIG. 1

two sets, the notion of counting is necessarily ruled out. It may
be possible, nevertheless, to set up a one-to-one correspondence
between the elements of two sets even when the number is
infinite. Thus, it is easy to set up such a correspondence between
the points of a line an inch long and the points of a line two inches
long. For let the lines (Fig. 1) beAB andA'B'. JoinAA' andBB',
and let these joining lines meet inS. For every pointC on AB a
point C' may be found onA'B' by joining C to Sand noting the
pointC' whereCSmeetsA'B'. Similarly, a pointC may be found
on AB for any pointC' on A'B'. The correspondence is clearly
one-to-one, but it would be absurd to infer from this that there
were just as many points onAB as onA'B'. In fact, it would be
just as reasonable to infer that there were twice as many points
on A'B' as onAB. For if we bendA'B' into a circle with center
at S (Fig. 2), we see that for every pointC on AB there are
two points onA'B'. Thus it is seen that the notion of one-to-one[4]

correspondence is more extensive than the notion of counting,
and includes the notion of counting only when applied to finite
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FIG. 2

assemblages.

5. Correspondence between a part and the whole of an
infinite assemblage. In the discussion of the last paragraph
the remarkable fact was brought to light that it is sometimes
possible to set the elements of an assemblage into one-to-one
correspondence with a part of those elements. A moment's
reflection will convince one that this is never possible when there
is a finite number of elements in the assemblage.—Indeed, we
may take this property as our definition of an infinite assemblage,
and say that an infinite assemblage is one that may be put into
one-to-one correspondence with part of itself. This has the
advantage of being a positive definition, as opposed to the usual
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negative definition of an infinite assemblage as one that cannot
be counted.

6. Infinitely distant point. We have illustrated above a
simple method of setting the points of two lines into one-to-one
correspondence. The same illustration will serve also to show
how it is possible to set the points on a line into one-to-one
correspondence with the lines through a point. Thus, for any
point C on the lineAB there is a lineSC throughS. We must
assume the lineAB extended indefinitely in both directions,
however, if we are to have a point on it for every line through
S; and even with this extension there is one line throughS,
according to Euclid's postulate, which does not meet the line
AB and which therefore has no point onAB to correspond to
it. In order to smooth out this discrepancy we are accustomed[5]

to assume the existence of aninfinitely distantpoint on the line
AB and to assign this point as the corresponding point of the
exceptional line ofS. With this understanding, then, we may say
that we have set the lines through a point and the points on a line
into one-to-one correspondence. This correspondence is of such
fundamental importance in the study of projective geometry that
a special name is given to it. Calling the totality of points on a
line apoint-row, and the totality of lines through a point apencil
of rays, we say that the point-row and the pencil related as above
are inperspective position, or that they areperspectively related.

7. Axial pencil; fundamental forms. A similar correspondence
may be set up between the points on a line and the planes through
another line which does not meet the first. Such a system of
planes is called anaxial pencil, and the three assemblages—the
point-row, the pencil of rays, and the axial pencil—are called
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fundamental forms. The fact that they may all be set into one-
to-one correspondence with each other is expressed by saying
that they are of the same order. It is usual also to speak of them
as of the first order. We shall see presently that there are other
assemblages which cannot be put into this sort of one-to-one
correspondence with the points on a line, and that they will very
reasonably be said to be of a higher order.

8. Perspective position. We have said that a point-row and
a pencil of rays are in perspective position if each ray of the
pencil goes through the point of the point-row which corresponds
to it. Two pencils of rays are also said to be in perspective[6]

position if corresponding rays meet on a straight line which is
called the axis of perspectivity. Also, two point-rows are said to
be in perspective position if corresponding points lie on straight
lines through a point which is called the center of perspectivity.
A point-row and an axial pencil are in perspective position if
each plane of the pencil goes through the point on the point-row
which corresponds to it, and an axial pencil and a pencil of rays
are in perspective position if each ray lies in the plane which
corresponds to it; and, finally, two axial pencils are perspectively
related if corresponding planes meet in a plane.

9. Projective relation. It is easy to imagine a more general
correspondence between the points of two point-rows than the one
just described. If we take two perspective pencils,A andS, then a
point-rowaperspective toAwill be in one-to-one correspondence
with a point-rowb perspective toB, but corresponding points
will not, in general, lie on lines which all pass through a point.
Two such point-rows are said to beprojectively related, or
simply projective to each other. Similarly, two pencils of rays,
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or of planes, are projectively related to each other if they are
perspective to two perspective point-rows. This idea will be
generalized later on. It is important to note that between the
elements of two projective fundamental forms there is a one-
to-one correspondence, and also that this correspondence is in
generalcontinuous; that is, by taking two elements of one form
sufficiently close to each other, the two corresponding elements
in the other form may be made to approach each other arbitrarily[7]

close. In the case of point-rows this continuity is subject to
exception in the neighborhood of the point "at infinity."

10. Infinity-to-one correspondence.It might be inferred that
any infinite assemblage could be put into one-to-one correspon-
dence with any other. Such is not the case, however, if the
correspondence is to be continuous, between the points on a
line and the points on a plane. Consider two lines which lie in
different planes, and takem points on one andn points on the
other. The number of lines joining them points of one to then
points jof the other is clearlymn. If we symbolize the totality
of points on a line by [infinity], then a reasonable symbol for
the totality of lines drawn to cut two lines would be [infinity]2.
Clearly, for every point on one line there are [infinity] lines
cutting across the other, so that the correspondence might be
called [infinity]-to-one. Thus the assemblage of lines cutting
across two lines is of higher order than the assemblage of points
on a line; and as we have called the point-row an assemblage of
the first order, the system of lines cutting across two lines ought
to be called of the second order.

11. Infinitudes of different orders. Now it is easy to set up
a one-to-one correspondence between the points in a plane and
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the system of lines cutting across two lines which lie in different
planes. In fact, each line of the system of lines meets the plane in
one point, and each point in the plane determines one and only
one line cutting across the two given lines—namely, the line of
intersection of the two planes determined by the given point with
each of the given lines. The assemblage of points in the plane is[8]

thus of the same order as that of the lines cutting across two lines
which lie in different planes, and ought therefore to be spoken of
as of the second order. We express all these results as follows:

12. If the infinitude of points on a line is taken as the infinitude
of the first order, then the infinitude of lines in a pencil of rays
and the infinitude of planes in an axial pencil are also of the first
order, while the infinitude of lines cutting across two "skew"
lines, as well as the infinitude of points in a plane, are of the
second order.

13. If we join each of the points of a plane to a point not in
that plane, we set up a one-to-one correspondence between the
points in a plane and the lines through a point in space.Thus the
infinitude of lines through a point in space is of the second order.

14. If to each line through a point in space we make correspond
that plane at right angles to it and passing through the same point,
we see thatthe infinitude of planes through a point in space is of
the second order.
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15. If to each plane through a point in space we make correspond
the line in which it intersects a given plane, we see thatthe
infinitude of lines in a plane is of the second order.This may also
be seen by setting up a one-to-one correspondence between the
points on a plane and the lines of that plane. Thus, take a point
Snot in the plane. Join any pointM of the plane toS. ThroughS
draw a plane at right angles toMS. This meets the given plane
in a line m which may be taken as corresponding to the point
M. Another very important method of setting up a one-to-one[9]

correspondence between lines and points in a plane will be given
later, and many weighty consequences will be derived from it.

16. Plane system and point system.The plane, considered as
made up of the points and lines in it, is called aplane systemand
is a fundamental form of the second order. The point, considered
as made up of all the lines and planes passing through it, is called
a point systemand is also a fundamental form of the second
order.

17. If now we take three lines in space all lying in different
planes, and selectl points on the first,m points on the second,
andn points on the third, then the total number of planes passing
through one of the selected points on each line will belmn. It is
reasonable, therefore, to symbolize the totality of planes that are
determined by the [infinity] points on each of the three lines by
[infinity] 3, and to call it an infinitude of thethird order. But it is
easily seen that every plane in space is included in this totality,
so thatthe totality of planes in space is an infinitude of the third
order.
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18. Consider now the planes perpendicular to these three lines.
Every set of three planes so drawn will determine a point in
space, and, conversely, through every point in space may be
drawn one and only one set of three planes at right angles to the
three given lines. It follows, therefore, thatthe totality of points
in space is an infinitude of the third order.

19. Space system.Space of three dimensions, considered as
made up of all its planes and points, is then a fundamental form
of thethird order, which we shall call aspace system.[10]

20. Lines in space.If we join the twofold infinity of points in
one plane with the twofold infinity of points in another plane,
we get a totality of lines of space which is of the fourth order of
infinity. The totality of lines in space gives, then, a fundamental
form of the fourth order.

21. Correspondence between points and numbers.In the
theory of analytic geometry a one-to-one correspondence is
assumed to exist between points on a line and numbers. In order
to justify this assumption a very extended definition of number
must be made use of. A one-to-one correspondence is then set
up between points in the plane and pairs of numbers, and also
between points in space and sets of three numbers. A single
constant will serve to define the position of a point on a line;
two, a point in the plane; three, a point in space; etc. In the
same theory a one-to-one correspondence is set up between loci
in the plane and equations in two variables; between surfaces in
space and equations in three variables; etc. The equation of a



22. Elements at infinity 11

line in a plane involves two constants, either of which may take
an infinite number of values. From this it follows that there is an
infinity of lines in the plane which is of the second order if the
infinity of points on a line is assumed to be of the first. In the
same way a circle is determined by three conditions; a sphere by
four; etc. We might then expect to be able to set up a one-to-one
correspondence between circles in a plane and points, or planes
in space, or between spheres and lines in space. Such, indeed,
is the case, and it is often possible to infer theorems concerning
spheres from theorems concerning lines, and vice versa. It is[11]

possibilities such as these that, give to the theory of one-to-one
correspondence its great importance for the mathematician. It
must not be forgotten, however, that we are considering only
continuouscorrespondences. It is perfectly possible to set, up a
one-to-one correspondence between the points of a line and the
points of a plane, or, indeed, between the points of a line and
the points of a space of any finite number of dimensions, if the
correspondence is not restricted to be continuous.

22. Elements at infinity. A final word is necessary in order to
explain a phrase which is in constant use in the study of projective
geometry. We have spoken of the "point at infinity" on a straight
line—a fictitious point only used to bridge over the exceptional
case when we are setting up a one-to-one correspondence between
the points of a line and the lines through a point. We speak of it
as "a point" and not as "points," because in the geometry studied
by Euclid we assume only one line through a point parallel to
a given line. In the same sense we speak of all the points at
infinity in a plane as lying on a line, "the line at infinity," because
the straight line is the simplest locus we can imagine which has
only one point in common with any line in the plane. Likewise
we speak of the "plane at infinity," because that seems the most
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convenient way of imagining the points at infinity in space. It
must not be inferred that these conceptions have any essential
connection with physical facts, or that other means of picturing
to ourselves the infinitely distant configurations are not possible.
In other branches of mathematics, notably in the theory of[12]

functions of a complex variable, quite different assumptions are
made and quite different conceptions of the elements at infinity
are used. As we can know nothing experimentally about such
things, we are at liberty to make any assumptions we please, so
long as they are consistent and serve some useful purpose.

PROBLEMS

1. Since there is a threefold infinity of points in space, there
must be a sixfold infinity of pairs of points in space. Each pair of
points determines a line. Why, then, is there not a sixfold infinity
of lines in space?

2. If there is a fourfold infinity of lines in space, why is it that
there is not a fourfold infinity of planes through a point, seeing
that each line in space determines a plane through that point?

3. Show that there is a fourfold infinity of circles in space that
pass through a fixed point. (Set up a one-to-one correspondence
between the axes of the circles and lines in space.)

4. Find the order of infinity of all the lines of space that cut
across a given line; across two given lines; across three given
lines; across four given lines.

5. Find the order of infinity of all the spheres in space that
pass through a given point; through two given points; through
three given points; through four given points.

6. Find the order of infinity of all the circles on a sphere; of all
the circles on a sphere that pass through a fixed point; through
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two fixed points; through three fixed points; of all the circles in
space; of all the circles that cut across a given line. [13]

7. Find the order of infinity of all lines tangent to a sphere;
of all planes tangent to a sphere; of lines and planes tangent to a
sphere and passing through a fixed point.

8. Set up a one-to-one correspondence between the series of
numbers1, 2, 3, 4, ... and the series of even numbers2, 4, 6, 8
.... Are we justified in saying that there are just as many even
numbers as there are numbers altogether?

9. Is the axiom "The whole is greater than one of its parts"
applicable to infinite assemblages?

10. Make out a classified list of all the infinitudes of the first,
second, third, and fourth orders mentioned in this chapter.

[14]



CHAPTER II - RELATIONS
BETWEEN FUNDAMENTAL
FORMS IN ONE-TO-ONE
CORRESPONDENCE WITH
EACH OTHER

23. Seven fundamental forms. In the preceding chapter we
have called attention to seven fundamental forms: the point-row,
the pencil of rays, the axial pencil, the plane system, the point
system, the space system, and the system of lines in space. These
fundamental forms are the material which we intend to use in
building up a general theory which will be found to include
ordinary geometry as a special case. We shall be concerned,
not with measurement of angles and areas or line segments as
in the study of Euclid, but in combining and comparing these
fundamental forms and in "generating" new forms by means
of them. In problems of construction we shall make no use
of measurement, either of angles or of segments, and except in
certain special applications of the general theory we shall not find
it necessary to require more of ourselves than the ability to draw
the line joining two points, or to find the point of intersections of
two lines, or the line of intersection of two planes, or, in general,
the common elements of two fundamental forms.
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24. Projective properties. Our chief interest in this chapter
will be the discovery of relations between the elements of one
form which hold between the corresponding elements of any[15]

other form in one-to-one correspondence with it. We have
already called attention to the danger of assuming that whatever
relations hold between the elements of one assemblage must
also hold between the corresponding elements of any assemblage
in one-to-one correspondence with it. This false assumption
is the basis of the so-called "proof by analogy" so much in
vogue among speculative theorists. When it appears that certain
relations existing between the points of a given point-row do
not necessitate the same relations between the corresponding
elements of another in one-to-one correspondence with it, we
should view with suspicion any application of the "proof by
analogy" in realms of thought where accurate judgments are not
so easily made. For example, if in a given point-rowu three
points,A, B, andC, are taken such thatB is the middle point of
the segmentAC, it does not follow that the three pointsA', B',
C' in a point-row perspective tou will be so related. Relations
between the elements of any form which do go over unaltered
to the corresponding elements of a form projectively related to it
are calledprojective relations.Relations involving measurement
of lines or of angles are not projective.

25. Desargues's theorem. We consider first the following
beautiful theorem, due to Desargues and called by his name.

If two triangles, A, B, C and A', B', C', are so situated that the
lines AA', BB', and CC' all meet in a point, then the pairs of sides
AB and A'B', BC and B'C', CA and C'A' all meet on a straight
line, and conversely. [16]
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FIG. 3

Let the linesAA', BB', andCC' meet in the pointM (Fig. 3).
Conceive of the figure as in space, so thatM is the vertex of a
trihedral angle of which the given triangles are plane sections.
The linesABandA'B' are in the same plane and must meet when
produced, their point of intersection being clearly a point in the
plane of each triangle and therefore in the line of intersection
of these two planes. Call this pointP. By similar reasoning the
point Q of intersection of the linesBC andB'C' must lie on this
same line as well as the pointR of intersection ofCA andC'A'.
Therefore the pointsP, Q, andR all lie on the same linem. If
now we consider the figure a plane figure, the pointsP, Q, and
R still all lie on a straight line, which proves the theorem. The
converse is established in the same manner.
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26. Fundamental theorem concerning two complete quad-
rangles. This theorem throws into our hands the following
fundamental theorem concerning two complete quadrangles, a
complete quadranglebeing defined as the figure obtained by
joining any four given points by straight lines in the six possible
ways.

Given two complete quadrangles, K, L, M, N and K', L', M',
N', so related that KL, K'L', MN, M'N' all meet in a point A; LM,
L'M', NK, N'K' all meet in a point Q; and LN, L'N' meet in a[17]

point B on the line AC; then the lines KM and K'M' also meet in
a point D on the line AC.

FIG. 4

For, by the converse of the last theorem,KK', LL', andNN' all
meet in a pointS (Fig. 4). AlsoLL', MM', andNN' meet in a
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point, and therefore in the same pointS. ThusKK', LL', andMM'
meet in a point, and so, by Desargues's theorem itself,A, B, and
D are on a straight line.

27. Importance of the theorem.The importance of this theorem
lies in the fact that,A, B, andC being given, an indefinite number
of quadranglesK', L', M', N' my be found such thatK'L' and
M'N' meet inA, K'N' andL'M' in C, with L'N' passing throughB.
Indeed, the linesAK' andAM' may be drawn arbitrarily through
A, and any line throughB may be used to determineL' andN'. By
joining these two points toC the pointsK' andM' are determined.
Then the line joiningK' andM', found in this way, must pass[18]

through the pointD already determined by the quadrangleK, L,
M, N. The three points A, B, C, given in order, serve thus to
determine a fourth point D.

28. In a complete quadrangle the line joining any two points is
called theopposite sideto the line joining the other two points.
The result of the preceding paragraph may then be stated as
follows:

Given three points,A, B, C, in a straight line, if a pair of
opposite sides of a complete quadrangle pass throughA, and
another pair throughC, and one of the remaining two sides goes
throughB, then the other of the remaining two sides will go
through a fixed point which does not depend on the quadrangle
employed.

29. Four harmonic points. Four points,A, B, C, D, related as
in the preceding theorem are calledfour harmonic points. The
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point D is called thefourth harmonic of B with respect to A
and C. SinceB andD play exactly the same rôle in the above
construction,B is also the fourth harmonic of D with respect to
A and C. B andD are calledharmonic conjugates with respect
to A and C. We proceed to show thatA andC are also harmonic
conjugates with respect toB andD—that is, that it is possible to
find a quadrangle of which two opposite sides shall pass through
B, two throughD, and of the remaining pair, one throughA and
the other throughC.

FIG. 5

Let O be the intersection ofKM andLN (Fig. 5). JoinO to A
andC. The joining lines cut out on the sides of the quadrangle
four points,P, Q, R, S. Consider the quadrangleP, K, Q, O.
One pair of opposite sides passes throughA, one throughC, and [19]

one remaining side throughD; therefore the other remaining side
must pass throughB. Similarly,RSpasses throughB andPSand
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QRpass throughD. The quadrangleP, Q, R, Stherefore has two
opposite sides throughB, two throughD, and the remaining pair
throughA and C. A and C are thus harmonic conjugates with
respect toB andD. We may sum up the discussion, therefore, as
follows:

30. If A andC are harmonic conjugates with respect toB andD,
thenB andD are harmonic conjugates with respect toA andC.

31. Importance of the notion.The importance of the notion of
four harmonic points lies in the fact that it is a relation which is
carried over from four points in a point-rowu to the four points
that correspond to them in any point-rowu' perspective tou.

To prove this statement we construct a quadrangleK, L, M, N
such thatKL andMN pass throughA, KN andLM throughC, LN
throughB, andKM throughD. Take now any pointSnot in the
plane of the quadrangle and construct the planes determined byS
and all the seven lines of the figure. Cut across this set of planes
by another plane not passing throughS. This plane cuts out on
the set of seven planes another quadrangle which determines[20]

four new harmonic points,A', B', C', D', on the lines joiningSto
A, B, C, D. But S may be taken as any point, since the original
quadrangle may be taken in any plane throughA, B, C, D; and,
further, the pointsA', B', C', D' are the intersection ofSA, SB,
SC, SDby any line. We have, then, the remarkable theorem:

32. If any point is joined to four harmonic points, and the
four lines thus obtained are cut by any fifth, the four points of
intersection are again harmonic.
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33. Four harmonic lines.We are now able to extend the notion
of harmonic elements to pencils of rays, and indeed to axial
pencils. For if we definefour harmonic raysas four rays which
pass through a point and which pass one through each of four
harmonic points, we have the theorem

Four harmonic lines are cut by any transversal in four har-
monic points.

34. Four harmonic planes. We also definefour harmonic
planesas four planes through a line which pass one through each
of four harmonic points, and we may show that

Four harmonic planes are cut by any plane not passing
through their common line in four harmonic lines, and also by
any line in four harmonic points.

For let the planes±, ², ³, ´, which all pass through the lineg,
pass also through the four harmonic pointsA, B, C, D, so that±
passes throughA, etc. Then it is clear that any planeÀ through
A, B, C, D will cut out four harmonic lines from the four planes,
for they are lines through the intersectionP of g with the plane [21]

À, and they pass through the given harmonic pointsA, B, C, D.
Any other planeÃ cutsg in a pointSand cuts±, ², ³, ´ in four
lines that meetÀ in four pointsA', B', C', D' lying onPA, PB, PC,
andPD respectively, and are thus four harmonic hues. Further,
any ray cuts±, ², ³, ´ in four harmonic points, since any plane
through the ray gives four harmonic lines of intersection.

35.These results may be put together as follows:
Given any two assemblages of points, rays, or planes, per-

spectively related to each other, four harmonic elements of one
must correspond to four elements of the other which are likewise
harmonic.
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If, now, two forms are perspectively related to a third, any
four harmonic elements of one must correspond to four harmonic
elements in the other. We take this as our definition of projective
correspondence, and say:

36. Definition of projectivity. Two fundamental forms are pro-
tectively related to each other when a one-to-one correspondence
exists between the elements of the two and when four harmonic
elements of one correspond to four harmonic elements of the
other.

FIG. 6

37. Correspondence between harmonic conjugates.Given
four harmonic points,A, B, C, D; if we fix A andC, thenB and
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D vary together in a way that should be thoroughly understood.
To get a clear conception of their relative motion we may fix the
pointsL andM of the quadrangleK, L, M, N (Fig. 6). Then, asB
describes the point-rowAC, the pointN describes the point-row [22]

AM perspective to it. ProjectingN again fromC, we get a point-
row K on AL perspective to the point-rowN and thus projective
to the point-rowB. Project the point-rowK from M and we get
a point-rowD on AC again, which is projective to the point-row
B. For every pointB we have thus one and only one pointD,
and conversely. In other words, we have set up a one-to-one
correspondence between the points of a single point-row, which
is also a projective correspondence because four harmonic points
B correspond to four harmonic pointsD. We may note also that
the correspondence is here characterized by a feature which does
not always appear in projective correspondences: namely, the
same process that carries one fromB to D will carry one back
from D to B again. This special property will receive further
study in the chapter on Involution.

38. It is seen that asB approachesA, D also approachesA. As
B moves fromA toward C, D moves fromA in the opposite
direction, passing through the point at infinity on the lineAC,
and returns on the other side to meetB atC again. In other words,
asB traversesAC, D traverses the rest of the line fromA to C
through infinity. In all positions ofB, except atA or C, B andD
are separated from each other byA andC. [23]

39. Harmonic conjugate of the point at infinity. It is
natural to inquire what position ofB corresponds to the infinitely
distant position ofD. We have proved (§ 27) that the particular
quadrangleK, L, M, N employed is of no consequence. We shall
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therefore avail ourselves of one that lends itself most readily to
the solution of the problem. We choose the pointL so that the
triangle ALC is isosceles (Fig. 7). SinceD is supposed to be
at infinity, the lineKM is parallel toAC. Therefore the triangles
KAC andMAC are equal, and the triangleANC is also isosceles.
The trianglesCNL andANL are therefore equal, and the lineLB
bisects the angleALC. B is therefore the middle point ofAC, and
we have the theorem

The harmonic conjugate of the middle point of AC is at infinity.

FIG. 7
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40. Projective theorems and metrical theorems. Linear
construction. This theorem is the connecting link between the
general protective theorems which we have been considering so
far and the metrical theorems of ordinary geometry. Up to this
point we have said nothing about measurements, either of line
segments or of angles. Desargues's theorem and the theory of
harmonic elements which depends on it have nothing to do with
magnitudes at all. Not until the notion of an infinitely distant
point is brought in is any mention made of distances or directions.
We have been able to make all of our constructions up to this
point by means of the straightedge, or ungraduated ruler. A
construction made with such an instrument we shall call alinear [24]

construction. It requires merely that we be able to draw the line
joining two points or find the point of intersection of two lines.

41. Parallels and mid-points.It might be thought that drawing
a line through a given point parallel to a given line was only
a special case of drawing a line joining two points. Indeed,
it consists only in drawing a line through the given point and
through the "infinitely distant point" on the given line. It must
be remembered, however, that the expression "infinitely distant
point" must not be taken literally. When we say that two parallel
lines meet "at infinity," we really mean that they do not meet
at all, and the only reason for using the expression is to avoid
tedious statement of exceptions and restrictions to our theorems.
We ought therefore to consider the drawing of a line parallel to a
given line as a different accomplishment from the drawing of the
line joining two given points. It is a remarkable consequence of
the last theorem that a parallel to a given line and the mid-point
of a given segment are equivalent data. For the construction
is reversible, and if we are given the middle point of a given
segment, we can constructlinearly a line parallel to that segment.
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Thus, given thatB is the middle point ofAC, we may draw any
two lines throughA, and any line throughBcutting them in points
N andL. JoinN andL to C and get the pointsK andM on the two
lines throughA. ThenKM is parallel toAC. The bisection of a
given segment and the drawing of a line parallel to the segment
are equivalent data when linear construction is used.[25]

42. It is not difficult to give a linear construction for the problem
to divide a given segment inton equal parts, given only a parallel
to the segment. This is simple enough whenn is a power of2.
For any other number, such as29, divide any segment on the line
parallel toAC into 32 equal parts, by a repetition of the process
just described. Take29 of these, and join the first toA and the
last toC. Let these joining lines meet inS. JoinS to all the other
points. Other problems, of a similar sort, are given at the end of
the chapter.

43. Numerical relations. Since three points, given in order,
are sufficient to determine a fourth, as explained above, it ought
to be possible to reproduce the process numerically in view
of the one-to-one correspondence which exists between points
on a line and numbers; a correspondence which, to be sure,
we have not established here, but which is discussed in any
treatise on the theory of point sets. We proceed to discover
what relation between four numbers corresponds to the harmonic
relation between four points.
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FIG. 8

44. Let A, B, C, D be four harmonic points (Fig. 8), and letSA,
SB, SC, SDbe four harmonic lines. Assume a line drawn through
B parallel toSD, meetingSAin A' andSCin C'. ThenA', B', C',
and the infinitely distant point onA'C' are four harmonic points,
and thereforeB is the middle point of the segmentA'C'. Then,
since the triangleDAS is similar to the triangleBAA', we may [26]

write the proportion
AB : AD = BA' : SD.

Also, from the similar trianglesDSCandBCC', we have
CD : CB = SD : B'C.

From these two proportions we have, remembering thatBA' =
BC',

AB · CD

AD · CB
= −1,

the minus sign being given to the ratio on account of the fact
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thatA andC are always separated fromB andD, so that one or
three of the segmentsAB, CD, AD, CBmust be negative.

45.Writing the last equation in the form
CB : AB = -CD : AD,

and using the fundamental relation connecting three points on
a line,

PR + RQ = PQ,
which holds for all positions of the three points if account be

taken of the sign of the segments, the last proportion may be
written

(CB - BA) : AB = -(CA - DA) : AD,
or

(AB - AC) : AB = (AC - AD) : AD;
so that AB, AC, and AD are three quantities in hamonic

progression, since the difference between the first and second is
to the first as the difference between the second and third is to the
third. Also, from this last proportion comes the familiar relation

2
AC

=
1

AB
+

1
AD

,

which is convenient for the computation of the distanceAD
whenABandACare given numerically.[27]

46. Anharmonic ratio. The corresponding relations between
the trigonometric functions of the angles determined by four
harmonic lines are not difficult to obtain, but as we shall not need
them in building up the theory of projective geometry, we will not
discuss them here. Students who have a slight acquaintance with
trigonometry may read in a later chapter (§ 161) a development
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of the theory of a more general relation, called theanharmonic
ratio, or cross ratio, which connects any four points on a line.

PROBLEMS

1. Draw through a given point a line which shall pass through
the inaccessible point of intersection of two given lines. The
following construction may be made to depend upon Desargues's
theorem: Through the given pointP draw any two rays cutting
the two lines in the pointsAB' andA'B, A, B, lying on one of
the given lines andA', B', on the other. JoinAA' andBB', and
find their point of intersectionS. ThroughSdraw any other ray,
cutting the given lines inCC'. Join BC' and B'C, and obtain
their point of intersectionQ. PQ is the desired line. Justify this
construction.

2. To draw through a given pointP a line which shall meet
two given lines in pointsA andB, equally distant fromP. Justify
the following construction: JoinP to the pointSof intersection
of the two given lines. Construct the fourth harmonic ofPSwith
respect to the two given lines. Draw throughP a line parallel to
this line. This is the required line.

3. Given a parallelogram in the same plane with a given
segmentAC, to construct linearly the middle point ofAC. [28]

4. Given four harmonic lines, of which one pair are at right
angles to each other, show that the other pair make equal angles
with them. This is a theorem of which frequent use will be made.

5. Given the middle point of a line segment, to draw a line
parallel to the segment and passing through a given point.

6. A line is drawn cutting the sides of a triangleABC in
the pointsA', B', C' the point A' lying on the sideBC, etc.
The harmonic conjugate ofA' with respect toB andC is then
constructed and calledA". Similarly, B" andC" are constructed.
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Show thatA"B"C" lie on a straight line. Find other sets of three
points on a line in the figure. Find also sets of three lines through
a point.



[29]

CHAPTER III - COMBINATION
OF TWO PROJECTIVELY
RELATED FUNDAMENTAL
FORMS

47. Superposed fundamental forms. Self-corresponding
elements. We have seen (§ 37) that two projective point-rows
may be superposed upon the same straight line. This happens,
for example, when two pencils which are projective to each other
are cut across by a straight line. It is also possible for two
projective pencils to have the same center. This happens, for
example, when two projective point-rows are projected to the
same point. Similarly, two projective axial pencils may have the
same axis. We examine now the possibility of two forms related
in this way, having an element or elements that correspond to
themselves. We have seen, indeed, that ifB andD are harmonic
conjugates with respect toA andC, then the point-row described
by B is projective to the point-row described byD, and thatA
and C are self-corresponding points. Consider more generally
the case of two pencils perspective to each other with axis of
perspectivityu' (Fig. 9). Cut across them by a lineu. We get thus
two projective point-rows superposed on the same lineu, and a
moment's reflection serves to show that the pointNof intersection
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FIG. 9

u andu' corresponds to itself in the two point-rows. Also, the
point M, whereu intersects the line joining the centers of the[30]

two pencils, is seen to correspond to itself. It is thus possible
for two projective point-rows, superposed upon the same line, to
have two self-corresponding points. ClearlyM andN may fall
together if the line joining the centers of the pencils happens to
pass through the point of intersection of the linesu andu'.
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48. We may also give an illustration of a case where two
superposed projective point-rows have no self-corresponding
points at all. Thus we may take two lines revolving about a
fixed point S and always making the same angle a with each
other (Fig. 10). They will cut out on any lineu in the plane
two point-rows which are easily seen to be projective. For, given
any four raysSP which are harmonic, the four corresponding
raysSP'must also be harmonic, since they make the same angles
with each other. Four harmonic pointsP correspond, therefore,
to four harmonic pointsP'. It is clear, however, that no point
P can coincide with its corresponding pointP', for in that case
the linesPSand P'Swould coincide, which is impossible if the[31]

angle between them is to be constant.

49. Fundamental theorem. Postulate of continuity.We have
thus shown that two projective point-rows, superposed one on
the other, may have two points, one point, or no point at all
corresponding to themselves. We proceed to show that

If two projective point-rows, superposed upon the same
straight line, have more than two self-corresponding points,
they must have an infinite number, and every point corresponds
to itself; that is, the two point-rows are not essentially distinct.

If three points,A, B, and C, are self-corresponding, then
the harmonic conjugateD of B with respect toA and C must
also correspond to itself. For four harmonic points must always
correspond to four harmonic points. In the same way the harmonic
conjugate ofD with respect toB andC must correspond to itself.
Combining new points with old in this way, we may obtain as
many self-corresponding points as we wish. We show further
that every point on the line is the limiting point of a finite or
infinite sequence of self-corresponding points. Thus, let a point
P lie betweenA andB. Construct nowD, the fourth harmonic
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of C with respect toA andB. D may coincide withP, in which
case the sequence is closed; otherwiseP lies in the stretchAD
or in the stretchDB. If it lies in the stretchDB, construct the
fourth harmonic ofC with respect toD andB. This pointD' may
coincide withP, in which case, as before, the sequence is closed.
If P lies in the stretchDD', we construct the fourth harmonic of
C with respect toDD', etc. In each step the region in whichP[32]

lies is diminished, and the process may be continued until two
self-corresponding points are obtained on either side ofP, and at
distances from it arbitrarily small.

We now assume, explicitly, the fundamental postulate that the
correspondence iscontinuous, that is, thatthe distance between
two points in one point-row may be made arbitrarily small by
sufficiently diminishing the distance between the corresponding
points in the other.Suppose now thatP is not a self-corresponding
point, but corresponds to a pointP' at a fixed distanced from P.
As noted above, we can find self-corresponding points arbitrarily
close toP, and it appears, then, that we can take a pointD as close
to P as we wish, and yet the distance between the corresponding
points D' and P' approachesd as a limit, and not zero, which
contradicts the postulate of continuity.

50. It follows also that two projective pencils which have the
same center may have no more than two self-corresponding rays,
unless the pencils are identical. For if we cut across them by
a line, we obtain two projective point-rows superposed on the
same straight line, which may have no more than two self-
corresponding points. The same considerations apply to two
projective axial pencils which have the same axis.
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51. Projective point-rows having a self-corresponding point
in common. Consider now two projective point-rows lying on
different lines in the same plane. Their common point may or
may not be a self-corresponding point. If the two point-rows
are perspectively related, then their common point is evidently a
self-corresponding point. The converse is also true, and we have[33]

the very important theorem:

52. If in two protective point-rows, the point of intersection
corresponds to itself, then the point-rows are in perspective
position.

Let the two point-rows beu andu' (Fig. 11). LetA andA',
B andB', be corresponding points, and let also the pointM of
intersection ofu and u' correspond to itself. LetAA' and BB'
meet in the pointS. TakeS as the center of two pencils, one
perspective tou and the other perspective tou'. In these two
pencilsSAcoincides with its corresponding raySA', SBwith its
corresponding raySB', andSM with its corresponding raySM'.
The two pencils are thus identical, by the preceding theorem,
and any raySD must coincide with its corresponding raySD'.
Corresponding points ofu and u', therefore, all lie on lines
through the pointS.

53.An entirely similar discussion shows that
If in two projective pencils the line joining their centers is a

self-corresponding ray, then the two pencils are perspectively
related.
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54. A similar theorem may be stated for two axial pencils of
which the axes intersect. Very frequent use will be made of these
fundamental theorems.

55. Point-row of the second order. The question naturally
arises, What is the locus of points of intersection of corresponding
rays of two projective pencils which are not in perspective[34]

position? This locus, which will be discussed in detail in
subsequent chapters, is easily seen to have at most two points
in common with any line in the plane, and on account of this
fundamental property will be called apoint-row of the second
order. For any lineu in the plane of the two pencils will be
cut by them in two projective point-rows which have at most
two self-corresponding points. Such a self-corresponding point
is clearly a point of intersection of corresponding rays of the two
pencils.

56.This locus degenerates in the case of two perspective pencils
to a pair of straight lines, one of which is the axis of perspectivity
and the other the common ray, any point of which may be
considered as the point of intersection of corresponding rays of
the two pencils.

57. Pencils of rays of the second order.Similar investi-
gations may be made concerning the system of lines joining
corresponding points of two projective point-rows. If we project
the point-rows to any point in the plane, we obtain two projective
pencils having the same center. At most two pairs of self-
corresponding rays may present themselves. Such a ray is clearly
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a line joining two corresponding points in the two point-rows.
The result may be stated as follows:The system of rays joining
corresponding points in two protective point-rows has at most
two rays in common with any pencil in the plane.For that reason
the system of rays is calleda pencil of rays of the second order.

58. In the case of two perspective point-rows this system of
rays degenerates into two pencils of rays of the first order, one
of which has its center at the center of perspectivity of the two[35]

point-rows, and the other at the intersection of the two point-
rows, any ray through which may be considered as joining two
corresponding points of the two point-rows.

59. Cone of the second order.The corresponding theorems
in space may easily be obtained by joining the points and lines
considered in the plane theorems to a pointS in space. Two
projective pencils give rise to two projective axial pencils with
axes intersecting. Corresponding planes meet in lines which all
pass throughS and through the points on a point-row of the
second order generated by the two pencils of rays. They are thus
generating lines of acone of the second order, or quadric cone,
so called because every plane in space not passing throughScuts
it in a point-row of the second order, and every line also cuts it
in at most two points. If, again, we project two point-rows to a
point S in space, we obtain two pencils of rays with a common
center but lying in different planes. Corresponding lines of these
pencils determine planes which are the projections toS of the
lines which join the corresponding points of the two point-rows.
At most two such planes may pass through any ray throughS. It
is calleda pencil of planes of the second order.
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PROBLEMS

1. A manA moves along a straight roadu, and another manB
moves along the same road and walks so as always to keep sight
of A in a small mirrorM at the side of the road. How many times
will they come together,A moving always in the same direction
along the road?[36]

2. How many times would the two men in the first problem
see each other in two mirrorsM andN as they walk along the
road as before? (The planes of the two mirrors are not necessarily
parallel tou.)

3. As A moves alongu, trace the path of B so that the two
men may always see each other in the two mirrors.

4. Two boys walk along two pathsu andu' each holding a
string which they keep stretched tightly between them. They
both move at constant but different rates of speed, letting out the
string or drawing it in as they walk. How many times will the
line of the string pass over any given point in the plane of the
paths?

5. Trace the lines of the string when the two boys move at the
same rate of speed in the two paths but do not start at the same
time from the point where the two paths intersect.

6. A ship is sailing on a straight course and keeps a gun trained
on a point on the shore. Show that a line at right angles to the
direction of the gun at its muzzle will pass through any point in
the plane twice or not at all. (Consider the point-row at infinity
cut out by a line through the point on the shore at right angles to
the direction of the gun.)

7. Two linesu and u' revolve about two pointsU and U'
respectively in the same plane. They go in the same direction and
at the same rate of speed, but one has an angle a the start of the
other. Show that they generate a point-row of the second order.
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8. Discuss the question given in the last problem when the
two lines revolve in opposite directions. Can you recognize the
locus?
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FIG. 10
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FIG. 11



[37]

CHAPTER IV - POINT-ROWS OF
THE SECOND ORDER

60. Point-row of the second order defined. We have seen
that two fundamental forms in one-to-one correspondence may
sometimes generate a form of higher order. Thus, two point-rows
(§ 55) generate a system of rays of the second order, and two
pencils of rays (§ 57), a system of points of the second order. As
a system of points is more familiar to most students of geometry
than a system of lines, we study first the point-row of the second
order.

61. Tangent line.We have shown in the last chapter (§ 55) that
the locus of intersection of corresponding rays of two projective
pencils is a point-row of the second order; that is, it has at most
two points in common with any line in the plane. It is clear, first
of all, that the centers of the pencils are points of the locus; for
to the lineSS', considered as a ray ofS, must correspond some
ray of S'which meets it inS'. S', and by the same argumentS, is
then a point where corresponding rays meet. Any ray throughS
will meet it in one point besidesS, namely, the pointP where it
meets its corresponding ray. Now, by choosing the ray through
S sufficiently close to the raySS', the pointP may be made to
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approach arbitrarily close toS', and the rayS'Pmay be made to
differ in position from the tangent line atS' by as little as we [38]

please. We have, then, the important theorem
The ray at S' which corresponds to the common ray SS' is

tangent to the locus at S'.
In the same manner the tangent atSmay be constructed.

62. Determination of the locus.We now show thatit is possible
to assign arbitrarily the position of three points, A, B, and C, on
the locus (besides the points S and S'); but, these three points
being chosen, the locus is completely determined.

63.This statement is equivalent to the following:
Given three pairs of corresponding rays in two projective

pencils, it is possible to find a ray of one which corresponds to
any ray of the other.

64.We proceed, then, to the solution of the fundamental
PROBLEM: Given three pairs of rays, aa', bb', and cc', of

two protective pencils, S and S', to find the ray d' of S' which
corresponds to any ray d of S.

Call A the intersection ofaa', B the intersection ofbb', andC
the intersection ofcc' (Fig. 12). JoinAB by the lineu, andAC
by the lineu'. Consideru as a point-row perspective toS, andu'
as a point-row perspective toS'. u andu' are projectively related
to each other, sinceSandS' are, by hypothesis, so related. But
their point of intersectionA is a self-corresponding point, since
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FIG. 12

a and a' were supposed to be corresponding rays. It follows
(§ 52) thatu and u' are in perspective position, and that lines
through corresponding points all pass through a pointM, the[39]

center of perspectivity, the position of which will be determined
by any two such lines. But the intersection ofa with u and the
intersection ofc' with u' are corresponding points onu andu',
and the line joining them is clearlyc itself. Similarly, b' joins
two corresponding points onu and u', and so the centerM of
perspectivity ofu andu' is the intersection ofc andb'. To find
d' in S' corresponding to a given lined of Swe note the pointL
whered meetsu. JoinL to M and get the pointN where this line
meetsu'. L andN are corresponding points onu andu', andd'
must therefore pass throughN. The intersectionP of d andd' is
thus another point on the locus. In the same manner any number
of other points may be obtained.

65. The linesu andu' might have been drawn in any direction
throughA (avoiding, of course, the linea for u and the linea' for
u'), and the center of perspectivityM would be easily obtainable;
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but the above construction furnishes a simple and instructive
figure. An equally simple one is obtained by takinga' for u and
a for u'. [40]

66. Lines joining four points of the locus to a fifth. Suppose
that the pointsS, S', B, C, andD are fixed, and that four points,A,
A1, A2, andA3, are taken on the locus at the intersection with it
of any four harmonic rays throughB. These four harmonic rays
give four harmonic points,L, L1 etc., on the fixed raySD. These,
in turn, project through the fixed pointM into four harmonic
points,N, N1 etc., on the fixed lineDS'. These last four harmonic
points give four harmonic raysCA, CA1, CA2, CA3. Therefore
the four pointsA which project toB in four harmonic rays also
project toC in four harmonic rays. ButC may be any point on
the locus, and so we have the very important theorem,

Four points which are on the locus, and which project to a
fifth point of the locus in four harmonic rays, project to any point
of the locus in four harmonic rays.

67.The theorem may also be stated thus:
The locus of points from which, four given points are seen

along four harmonic rays is a point-row of the second order
through them.

68.A further theorem of prime importance also follows:
Any two points on the locus may be taken as the centers of two

projective pencils which will generate the locus.
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69. Pascal's theorem.The pointsA, B, C, D, S, andS' may
thus be considered as chosen arbitrarily on the locus, and the
following remarkable theorem follows at once.[41]

Given six points, 1, 2, 3, 4, 5, 6, on the point-row of the second
order, if we call

L the intersection of 12 with 45,
M the intersection of 23 with 56,
N the intersection of 34 with 61,

then L, M, and N are on a straight line.

FIG. 13
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70. To get the notation to correspond to the figure, we may take
(Fig. 13)A = 1, B = 2, S' = 3, D = 4, S = 5, andC = 6. If we
makeA = 1, C=2, S=3, D = 4, S'=5, and.B = 6, the pointsL and
N are interchanged, but the line is left unchanged. It is clear that
one point may be named arbitrarily and the other five named in
5! = 120different ways, but since, as we have seen, two different
assignments of names give the same line, it follows that there
cannot be more than 60 different linesLMN obtained in this way
from a given set of six points. As a matter of fact, the number
obtained in this way is in general60. The above theorem, which
is of cardinal importance in the theory of the point-row of the
second order, is due to Pascal and was discovered by him at the
age of sixteen. It is, no doubt, the most important contribution to
the theory of these loci since the days of Apollonius. If the six[42]

points be called the vertices of a hexagon inscribed in the curve,
then the sides 12 and 45 may be appropriately called a pair of
opposite sides. Pascal's theorem, then, may be stated as follows:

The three pairs of opposite sides of a hexagon inscribed in a
point-row of the second order meet in three points on a line.

71. Harmonic points on a point-row of the second order.
Before proceeding to develop the consequences of this theorem,
we note another result of the utmost importance for the higher
developments of pure geometry, which follows from the fact that
if four points on the locus project to a fifth in four harmonic
rays, they will project to any point of the locus in four harmonic
rays. It is natural to speak of four such points as four harmonic
points on the locus, and to use this notion to define projective
correspondence between point-rows of the second order, or
between a point-row of the second order and any fundamental
form of the first order. Thus, in particular, the point-row of
the second order,Ã, is said to beperspectively relatedto the
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pencilSwhen every ray onSgoes through the point onÃ which
corresponds to it.

72. Determination of the locus.It is now clear that five points,
arbitrarily chosen in the plane, are sufficient to determine a point-
row of the second order through them. Two of the points may be
taken as centers of two projective pencils, and the three others
will determine three pairs of corresponding rays of the pencils,
and therefore all pairs. If four points of the locus are given,[43]

together with the tangent at one of them, the locus is likewise
completely determined. For if the point at which the tangent is
given be taken as the centerSof one pencil, and any other of the
points forS', then, besides the two pairs of corresponding rays
determined by the remaining two points, we have one more pair,
consisting of the tangent atSand the raySS'. Similarly, the curve
is determined by three points and the tangents at two of them.

73. Circles and conics as point-rows of the second order.It is
not difficult to see that a circle is a point-row of the second order.
Indeed, take any pointS on the circle and draw four harmonic
rays through it. They will cut the circle in four points, which
will project to any other point of the curve in four harmonic rays;
for, by the theorem concerning the angles inscribed in a circle,
the angles involved in the second set of four lines are the same
as those in the first set. If, moreover, we project the figure to
any point in space, we shall get a cone, standing on a circular
base, generated by two projective axial pencils which are the
projections of the pencils atS andS'. Cut across, now, by any
plane, and we get a conic section which is thus exhibited as the
locus of intersection of two projective pencils. It thus appears
that a conic section is a point-row of the second order. It will later
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appear that a point-row of the second order is a conic section. In
the future, therefore, we shall refer to a point-row of the second
order as a conic.

FIG. 14

74. Conic through five points. Pascal's theorem furnishes an
elegant solution of the problem of drawing a conic through five
given points. To construct a sixth point on the conic, draw[44]

through the point numbered 1 an arbitrary line (Fig. 14), and
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let the desired point 6 be the second point of intersection of this
line with the conic. The pointL = 12-45 is obtainable at once;
also the pointN = 34-61. But L andN determine Pascal's line,
and the intersection of 23 with 56 must be on this line. Intersect,
then, the lineLN with 23 and obtain the pointM. JoinM to 5 and
intersect with 61 for the desired point 6.

FIG. 15
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75. Tangent to a conic. If two points of Pascal's hexagon
approach coincidence, then the line joining them approaches as
a limiting position the tangent line at that point. Pascal's theorem
thus affords a ready method of drawing the tangent line to a conic
at a given point. If the conic is determined by the points 1, 2, 3,
4, 5 (Fig. 15), and it is desired to draw the tangent at the point 1,
we may call that point 1, 6. The pointsL andM are obtained as
usual, and the intersection of 34 withLM givesN. JoinN to the
point 1 for the desired tangent at that point.

76. Inscribed quadrangle.Two pairs of vertices may coalesce,
giving an inscribed quadrangle. Pascal's theorem gives for this
case the very important theorem

Two pairs of opposite sides of any quadrangle inscribed in a
conic meet on a straight line, upon which line also intersect the
two pairs of tangents at the opposite vertices. [45]

FIG. 16
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FIG. 17

For let the vertices beA, B, C, andD, and call the vertexA the
point 1, 6;B, the point 2;C, the point 3, 4; andD, the point 5
(Fig. 16). Pascal's theorem then indicates thatL = AB-CD, M =
AD-BC, andN, which is the intersection of the tangents atA and
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C, are all on a straight lineu. But if we were to callA the point
2, B the point 6, 1,C the point 5, andD the point 4, 3, then the
intersectionP of the tangents atB andD are also on this same
line u. ThusL, M, N, andP are four points on a straight line. The
consequences of this theorem are so numerous and important that
we shall devote a separate chapter to them.

77. Inscribed triangle. Finally, three of the vertices of the
hexagon may coalesce, giving a triangle inscribed in a conic.
Pascal's theorem then reads as follows (Fig. 17) for this case:

The three tangents at the vertices of a triangle inscribed in a
conic meet the opposite sides in three points on a straight line.[46]

FIG. 18
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78. Degenerate conic. If we apply Pascal's theorem to a
degenerate conic made up of a pair of straight lines, we get the
following theorem (Fig. 18):

If three points, A, B, C, are chosen on one line, and three
points, A', B', C', are chosen on another, then the three points L
= AB'-A'B, M = BC'-B'C, N = CA'-C'A are all on a straight line.

PROBLEMS

1. In Fig. 12, select different linesu and trace the locus of the
center of perspectivityM of the linesu andu'.

2. Given four points,A, B, C, D, in the plane, construct a
fifth point P such that the linesPA, PB, PC, PD shall be four
harmonic lines.

Suggestion.Draw a linea through the pointA such that the
four linesa, AB, AC, AD are harmonic. Construct now a conic
throughA, B, C, andD havinga for a tangent atA.

3. Where are all the pointsP, as determined in the preceding
question, to be found?

4. Select any five points in the plane and draw the tangent to
the conic through them at each of the five points.

5. Given four points on the conic, and the tangent at one of
them, to construct the conic. ("To construct the conic" means
here to construct as many other points as may be desired.)[47]

6. Given three points on the conic, and the tangent at two of
them, to construct the conic.

7. Given five points, two of which are at infinity in different
directions, to construct the conic. (In this, and in the following
examples, the student is supposed to be able to draw a line
parallel to a given line.)
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8. Given four points on a conic (two of which are at infinity
and two in the finite part of the plane), together with the tangent
at one of the finite points, to construct the conic.

9. The tangents to a curve at its infinitely distant points are
called its asymptotesif they pass through a finite part of the
plane. Given the asymptotes and a finite point of a conic, to
construct the conic.

10. Given an asymptote and three finite points on the conic,
to determine the conic.

11. Given four points, one of which is at infinity, and given
also that the line at infinity is a tangent line, to construct the
conic.
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CHAPTER V - PENCILS OF RAYS
OF THE SECOND ORDER

79. Pencil of rays of the second order defined. If the
corresponding points of two projective point-rows be joined by
straight lines, a system of lines is obtained which is called a
pencil of rays of the second order. This name arises from the
fact, easily shown (§ 57), that at most two lines of the system
may pass through any arbitrary point in the plane. For if through
any point there should pass three lines of the system, then this
point might be taken as the center of two projective pencils,
one projecting one point-row and the other projecting the other.
Since, now, these pencils have three rays of one coincident with
the corresponding rays of the other, the two are identical and
the two point-rows are in perspective position, which was not
supposed.

80. Tangents to a circle.To get a clear notion of this system
of lines, we may first show that the tangents to a circle form a
system of this kind. For take any two tangents,u andu', to a
circle, and letA andB be the points of contact (Fig. 19). Let
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FIG. 19

now t be any third tangent with point of contact atC and meeting
u andu' in P andP' respectively. JoinA, B, P, P', andC to O,
the center of the circle. Tangents from any point to a circle are
equal, and therefore the trianglesPOA and POC are equal, as
also are the trianglesP'OB andP'OC. Therefore the anglePOP' [49]

is constant, being equal to half the constant angleAOC + COB.
This being true, if we take any four harmonic points,P1, P2, P3,
P4, on the lineu, they will project toO in four harmonic lines,
and the tangents to the circle from these four points will meet
u' in four harmonic points,P'1, P'2, P'3, P'4, because the lines
from these points toO inclose the same angles as the lines from
the pointsP1, P2, P3, P4 on u. The point-row onu is therefore
projective to the point-row onu'. Thus the tangents to a circle are
seen to join corresponding points on two projective point-rows,
and so, according to the definition, form a pencil of rays of the
second order.
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81. Tangents to a conic. If now this figure be projected to
a point outside the plane of the circle, and any section of the
resulting cone be made by a plane, we can easily see that the
system of rays tangent to any conic section is a pencil of rays
of the second order. The converse is also true, as we shall see
later, and a pencil of rays of the second order is also a set of lines
tangent to a conic section.

82.The point-rowsu andu' are, themselves, lines of the system,
for to the common point of the two point-rows, considered as a
point ofu, must correspond some point ofu', and the line joining
these two corresponding points is clearlyu' itself. Similarly for
the lineu.

83. Determination of the pencil. We now show thatit is
possible to assign arbitrarily three lines, a, b, and c, of the[50]

system (besides the lines u and u'); but if these three lines are
chosen, the system is completely determined.

This statement is equivalent to the following:
Given three pairs of corresponding points in two projective

point-rows, it is possible to find a point in one which corresponds
to any point of the other.

We proceed, then, to the solution of the fundamental
PROBLEM. Given three pairs of points, AA', BB', and CC', of

two projective point-rows u and u', to find the point D' of u'
which corresponds to any given point D of u.

On the linea, joining A andA', take two points,S andS', as
centers of pencils perspective tou andu' respectively (Fig. 20).
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The figure will be much simplified if we takeSonBB' andS'on
CC'. SAandS'A'are corresponding rays ofSandS', and the two
pencils are therefore in perspective position. It is not difficult to
see that the axis of perspectivitym is the line joiningB' andC.
Given any pointD on u, to find the corresponding pointD' on u'
we proceed as follows: JoinD to S and note where the joining
line meetsm. Join this point toS'. This last line meetsu' in the
desired pointD'.

We have now in this figure six lines of the system,a, b, c, d,
u, andu'. Fix now the position ofu, u', b, c, andd, and take four
lines of the system,a1, a2, a3, a4, which meetb in four harmonic
points. These points project toD, giving four harmonic points [51]

on m. These again project toD', giving four harmonic points on
c. It is thus clear that the raysa1, a2, a3, a4 cut out two projective
point-rows on any two lines of the system. Thusu and u' are
not special rays, and any two rays of the system will serve as the
point-rows to generate the system of lines.

84. Brianchon's theorem. From the figure also appears a
fundamental theorem due to Brianchon:

If 1, 2, 3, 4, 5, 6 are any six rays of a pencil of the second
order, then the lines l = (12, 45), m = (23, 56), n = (34, 61) all
pass through a point.

85. To make the notation fit the figure (Fig. 21), makea=1, b =
2, u' = 3, d = 4, u = 5, c = 6; or, interchanging two of the lines,a
= 1, c = 2, u = 3, d = 4, u' = 5, b = 6. Thus, by different namings
of the lines, it appears that not more than 60 differentBrianchon
pointsare possible. If we call 12 and 45 opposite vertices of a
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circumscribed hexagon, then Brianchon's theorem may be stated
as follows:

The three lines joining the three pairs of opposite vertices of
a hexagon circumscribed about a conic meet in a point.

86. Construction of the pencil by Brianchon's theorem.
Brianchon's theorem furnishes a ready method of determining a
sixth line of the pencil of rays of the second order when five are[52]

given. Thus, select a point in line 1 and suppose that line 6 is to
pass through it. Thenl = (12, 45), n = (34, 61), and the linem =
(23, 56)must pass through(l, n). Then(23, ln)meets 5 in a point
of the required sixth line.

87. Point of contact of a tangent to a conic. If the line 2
approach as a limiting position the line 1, then the intersection
(1, 2) approaches as a limiting position the point of contact of
1 with the conic. This suggests an easy way to construct the
point of contact of any tangent with the conic. Thus (Fig. 22),
given the lines 1, 2, 3, 4, 5 to construct the point of contact of
1=6. Draw l = (12,45), m =(23,56); then(34, lm)meets 1 in the
required point of contactT.

88. Circumscribed quadrilateral. If two pairs of lines in
Brianchon's hexagon coalesce, we have a theorem concerning a
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quadrilateral circumscribed about a conic. It is easily found to be
(Fig. 23)

The four lines joining the two opposite pairs of vertices and the
two opposite points of contact of a quadrilateral circumscribed
about a conic all meet in a point.The consequences of this
theorem will be deduced later. [53]

89. Circumscribed triangle.The hexagon may further degener-
ate into a triangle, giving the theorem (Fig. 24)The lines joining
the vertices to the points of contact of the opposite sides of a
triangle circumscribed about a conic all meet in a point.

90.Brianchon's theorem may also be used to solve the following
problems:

Given four tangents and the point of contact on any one of
them, to construct other tangents to a conic. Given three tangents
and the points of contact of any two of them, to construct other
tangents to a conic.

91. Harmonic tangents.We have seen that a variable tangent
cuts out on any two fixed tangents projective point-rows. It
follows that if four tangents cut a fifth in four harmonic points,
they must cut every tangent in four harmonic points. It is possible,
therefore, to make the following definition:

Four tangents to a conic are said to be harmonic when they
meet every other tangent in four harmonic points.
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92. Projectivity and perspectivity. This definition suggests the
possibility of defining a projective correspondence between the
elements of a pencil of rays of the second order and the elements
of any form heretofore discussed. In particular, the points on a
tangent are said to beperspectively relatedto the tangents of a
conic when each point lies on the tangent which corresponds to
it. These notions are of importance in the higher developments
of the subject.[54]

93. Brianchon's theorem may also be applied to a degenerate
conic made up of two points and the lines through them. Thus(Fig.
25),

If a, b, c are three lines through a point S, and a', b', c' are
three lines through another point S', then the lines l = (ab', a'b),
m = (bc', b'c), and n = (ca', c'a) all meet in a point.

94. Law of duality. The observant student will not have failed
to note the remarkable similarity between the theorems of this
chapter and those of the preceding. He will have noted that points
have replaced lines and lines have replaced points; that points on
a curve have been replaced by tangents to a curve; that pencils
have been replaced by point-rows, and that a conic considered
as made up of a succession of points has been replaced by a
conic considered as generated by a moving tangent line. The
theory upon which this wonderfullaw of dualityis based will be
developed in the next chapter.
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PROBLEMS

1. Given four lines in the plane, to construct another which shall
meet them in four harmonic points.

2. Where are all such lines found?
3. Given any five lines in the plane, construct on each the

point of contact with the conic tangent to them all. [55]

4. Given four lines and the point of contact on one, to construct
the conic. ("To construct the conic" means here to draw as many
other tangents as may be desired.)

5. Given three lines and the point of contact on two of them,
to construct the conic.

6. Given four lines and the line at infinity, to construct the
conic.

7. Given three lines and the line at infinity, together with the
point of contact at infinity, to construct the conic.

8. Given three lines, two of which are asymptotes, to construct
the conic.

9. Given five tangents to a conic, to draw a tangent which
shall be parallel to any one of them.

10. The linesa, b, c are drawn parallel to each other. The lines
a', b', c' are also drawn parallel to each other. Show why the lines
(ab', a'b), (bc', b'c), (ca', c'a) meet in a point. (In problems 6 to
10 inclusive, parallel lines are to be drawn.)
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FIG. 20
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FIG. 21

FIG. 22
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FIG. 23
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FIG. 24
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FIG. 25



[56]

CHAPTER VI - POLES AND
POLARS

95. Inscribed and circumscribed quadrilaterals.The follow-
ing theorems have been noted as special cases of Pascal's and
Brianchon's theorems:

If a quadrilateral be inscribed in a conic, two pairs of opposite
sides and the tangents at opposite vertices intersect in four points,
all of which lie on a straight line.

If a quadrilateral be circumscribed about a conic, the lines
joining two pairs of opposite vertices and the lines joining two
opposite points of contact are four lines which meet in a point.

96. Definition of the polar line of a point. Consider the
quadrilateralK, L, M, N inscribed in the conic (Fig. 26). It
determines the four harmonic pointsA, B, C, D which project
from N in to the four harmonic pointsM, B, K, O. Now the
tangents atK andM meet inP, a point on the lineAB. The line
AB is thus determined entirely by the pointO. For if we draw [57]

any line through it, meeting the conic inK andM, and construct
the harmonic conjugateB of O with respect toK andM, and also
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FIG. 26

the two tangents atK andM which meet in the pointP, thenBP
is the line in question. It thus appears that the lineLON may
be any line whatever throughO; and sinceD, L, O, N are four
harmonic points, we may describe the lineAB as the locus of
points which are harmonic conjugates ofO with respect to the
two points where any line throughO meets the curve.

97.Furthermore, since the tangents atL andN meet on this same
line, it appears as the locus of intersections of pairs of tangents
drawn at the extremities of chords throughO.

98. This important line, which is completely determined by the
point O, is called thepolar of O with respect to the conic; and
the pointO is called thepoleof the line with respect to the conic.
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99. If a point B is on the polar ofO, then it is harmonically
conjugate toO with respect to the two intersectionsK andM of
the lineBC with the conic. But for the same reasonO is on the
polar ofB. We have, then, the fundamental theorem

If one point lies on the polar of a second, then the second lies
on the polar of the first.

100. Conjugate points and lines.Such a pair of points are said
to beconjugatewith respect to the conic. Similarly, lines are said
to beconjugateto each other with respect to the conic if one, and
consequently each, passes through the pole of the other. [58]

FIG. 27
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101. Construction of the polar line of a given point.Given a
point P, if it is within the conic (that is, if no tangents may be
drawn fromP to the conic), we may construct its polar line by
drawing through it any two chords and joining the two points of
intersection of the two pairs of tangents at their extremities. If
the pointP is outside the conic, we may draw the two tangents
and construct the chord of contact (Fig. 27).

102. Self-polar triangle. In Fig. 26 it is not difficult to see that
AOC is a self-polar triangle, that is, each vertex is the pole of
the opposite side. ForB, M, O, K are four harmonic points, and
they project toC in four harmonic rays. The lineCO, therefore,
meets the lineAMN in a point on the polar ofA, being separated
from A harmonically by the pointsM andN. Similarly, the line
CO meetsKL in a point on the polar ofA, and thereforeCO is
the polar ofA. Similarly,OA is the polar ofC, and thereforeO is
the pole ofAC.

103. Pole and polar projectively related. Another very
important theorem comes directly from Fig. 26.

As a point A moves along a straight line its polar with respect
to a conic revolves about a fixed point and describes a pencil
projective to the point-row described by A.

For, fix the pointsL andN and let the pointA move along the
line AQ; then the point-rowA is projective to the pencilLK, and
sinceK moves along the conic, the pencilLK is projective to the
pencilNK, which in turn is projective to the point-rowC, which,
finally, is projective to the pencilOC, which is the polar ofA.[59]
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104. Duality. We have, then, in the pole and polar relation
a device for setting up a one-to-one correspondence between
the points and lines of the plane—a correspondence which may
be called projective, because to four harmonic points or lines
correspond always four harmonic lines or points. To every figure
made up of points and lines will correspond a figure made up of
lines and points. To a point-row of the second order, which is a
conic considered as a point-locus, corresponds a pencil of rays of
the second order, which is a conic considered as a line-locus. The
name 'duality' is used to describe this sort of correspondence. It
is important to note that the dual relation is subject to the same
exceptions as the one-to-one correspondence is, and must not be
appealed to in cases where the one-to-one correspondence breaks
down. We have seen that there is in Euclidean geometry one
and only one ray in a pencil which has no point in a point-row
perspective to it for a corresponding point; namely, the line
parallel to the line of the point-row. Any theorem, therefore,
that involves explicitly the point at infinity is not to be translated
into a theorem concerning lines. Further, in the pencil the angle
between two lines has nothing to correspond to it in a point-row
perspective to the pencil. Any theorem, therefore, that mentions
angles is not translatable into another theorem by means of the
law of duality. Now we have seen that the notion of the infinitely
distant point on a line involves the notion of dividing a segment
into any number of equal parts—in other words, ofmeasuring.
If, therefore, we call any theorem that has to do with the line at
infinity or with the measurement of angles ametrical theorem, [60]

and any other kind aprojectivetheorem, we may put the case as
follows:

Any projective theorem involves another theorem, dual to it,
obtainable by interchanging everywhere the words 'point' and
'line.'
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105. Self-dual theorems.The theorems of this chapter will be
found, upon examination, to beself-dual; that is, no new theorem
results from applying the process indicated in the preceding
paragraph. It is therefore useless to look for new results from
the theorem on the circumscribed quadrilateral derived from
Brianchon's, which is itself clearly the dual of Pascal's theorem,
and in fact was first discovered by dualization of Pascal's.

106. It should not be inferred from the above discussion that
one-to-one correspondences may not be devised that will control
certain of the so-called metrical relations. A very important one
may be easily found that leaves angles unaltered. The relation
calledsimilarity leaves ratios between corresponding segments
unaltered. The above statements apply only to the particular
one-to-one correspondence considered.

PROBLEMS

1. Given a quadrilateral, construct the quadrangle polar to it with
respect to a given conic.

2. A point moves along a straight line. Show that its polar
lines with respect to two given conics generate a point-row of
the second order.[61]

3. Given five points, draw the polar of a point with respect to
the conic passing through them, without drawing the conic itself.

4. Given five lines, draw the polar of a point with respect to
the conic tangent to them, without drawing the conic itself.

5. Dualize problems 3 and 4.
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6. Given four points on the conic, and the tangent at one of
them, draw the polar of a given point without drawing the conic.
Dualize.

7. A point moves on a conic. Show that its polar line with
respect to another conic describes a pencil of rays of the second
order.

Suggestion.Replace the given conic by a pair of protective
pencils.

8. Show that the poles of the tangents of one conic with respect
to another lie on a conic.

9. The polar of a pointA with respect to one conic isa, and
the pole ofa with respect to another conic isA'. Show that asA
travels along a line,A' also travels along another line. In general,
if A describes a curve of degreen, show thatA' describes another
curve of the same degreen. (The degree of a curve is the greatest
number of points that it may have in common with any line in
the plane.)



[62]

CHAPTER VII - METRICAL
PROPERTIES OF THE CONIC
SECTIONS

107. Diameters. Center. After what has been said in the
last chapter one would naturally expect to get at the metrical
properties of the conic sections by the introduction of the infinite
elements in the plane. Entering into the theory of poles and
polars with these elements, we have the following definitions:

The polar line of an infinitely distant point is called adiameter,
and the pole of the infinitely distant line is called thecenter, of
the conic.

108.From the harmonic properties of poles and polars,
The center bisects all chords through it (§ 39).
Every diameter passes through the center.
All chords through the same point at infinity (that is, each of a

set of parallel chords) are bisected by the diameter which is the
polar of that infinitely distant point.
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109. Conjugate diameters.We have already defined conjugate
lines as lines which pass each through the pole of the other (§
100).

Any diameter bisects all chords parallel to its conjugate.
The tangents at the extremities of any diameter are parallel,

and parallel to the conjugate diameter.
Diameters parallel to the sides of a circumscribed parallelo-

gram are conjugate.
All these theorems are easy exercises for the student. [63]

110. Classification of conics.Conics are classified according
to their relation to the infinitely distant line. If a conic has two
points in common with the line at infinity, it is called ahyperbola;
if it has no point in common with the infinitely distant line, it is
called anellipse; if it is tangent to the line at infinity, it is called
aparabola.

111. In a hyperbola the center is outside the curve(§ 101),
since the two tangents to the curve at the points where it meets
the line at infinity determine by their intersection the center. As
previously noted, these two tangents are called theasymptotesof
the curve. The ellipse and the parabola have no asymptotes.

112.The center of the parabola is at infinity, and therefore all its
diameters are parallel,for the pole of a tangent line is the point
of contact.

The locus of the middle points of a series of parallel chords in
a parabola is a diameter, and the direction of the line of centers
is the same for all series of parallel chords.
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The center of an ellipse is within the curve.

FIG. 28

113. Theorems concerning asymptotes.We derived as a
consequence of the theorem of Brianchon (§ 89) the proposition
that if a triangle be circumscribed about a conic, the lines joining
the vertices to the points of contact of the opposite sides all meet
in a point. Take, now, for two of the tangents the asymptotes
of a hyperbola, and let any third tangent cut them inA and B
(Fig. 28). If, then,O is the intersection of the asymptotes,—and
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therefore the center of the curve,— then the triangleOAB is[64]

circumscribed about the curve. By the theorem just quoted, the
line throughA parallel toOB, the line throughB parallel toOA,
and the lineOP through the point of contact of the tangentABall
meet in a pointC. But OACB is a parallelogram, andPA = PB.
Therefore

The asymptotes cut off on each tangent a segment which is
bisected by the point of contact.

114. If we draw a lineOQ parallel toAB, thenOP andOQ are
conjugate diameters, sinceOQ is parallel to the tangent at the
point whereOP meets the curve. Then, sinceA, P, B, and the
point at infinity on AB are four harmonic points, we have the
theorem

Conjugate diameters of the hyperbola are harmonic conju-
gates with respect to the asymptotes.

115. The chordA"B", parallel to the diameterOQ, is bisected
at P' by the conjugate diameterOP. If the chordA"B" meet the
asymptotes inA', B', thenA', P', B', and the point at infinity are
four harmonic points, and thereforeP' is the middle point ofA'B'.
ThereforeA'A" = B'B" and we have the theorem

The segments cut off on any chord between the hyperbola and
its asymptotes are equal.

116. This theorem furnishes a ready means of constructing the
hyperbola by points when a point on the curve and the two
asymptotes are given. [65]
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FIG. 29

117. For the circumscribed quadrilateral, Brianchon's theorem
gave (§ 88)The lines joining opposite vertices and the lines
joining opposite points of contact are four lines meeting in a
point. Take now for two of the tangents the asymptotes, and
let AB and CD be any other two (Fig. 29). IfB and D are
opposite vertices, and alsoA andC, thenACandBD are parallel,
and parallel toPQ, the line joining the points of contact ofAB
andCD, for these are three of the four lines of the theorem just
quoted. The fourth is the line at infinity which joins the point of
contact of the asymptotes. It is thus seen that the trianglesABC
and ADC are equivalent, and therefore the trianglesAOB and
CODare also. The tangent AB may be fixed, and the tangentCD
chosen arbitrarily; therefore
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The triangle formed by any tangent to the hyperbola and the
two asymptotes is of constant area.

118. Equation of hyperbola referred to the asymptotes.Draw
through the point of contactP of the tangentAB two lines, one
parallel to one asymptote and the other parallel to the other. One
of these lines meetsOB at a distancey from O, and the other
meetsOA at a distancex from O. Then, sinceP is the middle
point of AB, x is one half ofOA andy is one half ofOB. The [66]

area of the parallelogram whose adjacent sides arex andy is one
half the area of the triangleAOB, and therefore, by the preceding
paragraph, is constant. This area is equal toxy · sin ±, where
± is the constant angle between the asymptotes. It follows that
the productxy is constant, and sincex and y are the oblique
coördinates of the pointP, the asymptotes being the axes of
reference, we have

The equation of the hyperbola, referred to the asymptotes as
axes, is xy = constant.

This identifies the curve with the hyperbola as defined and
discussed in works on analytic geometry.

119. Equation of parabola. We have defined the parabola
as a conic which is tangent to the line at infinity (§ 110). Draw
now two tangents to the curve (Fig. 30), meeting inA, the points
of contact beingB andC. These two tangents, together with the
line at infinity, form a triangle circumscribed about the conic.
Draw throughB a parallel toAC, and throughC a parallel toAB.
If these meet inD, thenAD is a diameter. LetAD meet the [67]

curve inP, and the chordBC in Q. P is then the middle point of
AQ. Also, Q is the middle point of the chordBC, and therefore
the diameterAD bisects all chords parallel toBC. In particular,
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AD passes throughP, the point of contact of the tangent drawn
parallel toBC.

Draw now another tangent, meetingAB in B' andAC in C'.
Then these three, with the line at infinity, make a circumscribed
quadrilateral. But, by Brianchon's theorem applied to a quadrilat-
eral (§ 88), it appears that a parallel toAC throughB', a parallel
to AB throughC', and the lineBC meet in a pointD'. Also, from
the similar trianglesBB'D' andBACwe have, for all positions of
the tangent lineB'C,

B'D' : BB' = AC : AB,
or, sinceB'D' = AC',

AC': BB' = AC:AB = constant.
If another tangent meetAB in B" andAC in C", we have

AC' : BB' = AC" : BB",
and by subtraction we get

C'C" : B'B" = constant;
whence
The segments cut off on any two tangents to a parabola by a

variable tangent are proportional.
If now we take the tangentB'C' as axis of ordinates, and the

diameter through the point of contactO as axis of abscissas,
calling the coordinates ofB(x, y)and ofC(x', y'), then, from the
similar trianglesBMD' and we have

y : y' = BD' : D'C = BB' : AB'.
Also

y : y' = B'D' : C'C = AC' : C'C.[68]

If now a line is drawn throughAparallel to a diameter, meeting
the axis of ordinates inK, we have

AK : OQ' = AC' : CC' = y : y',
and

OM : AK = BB' : AB' = y : y',
and, by multiplication,

OM : OQ' = y2 : y'2,
or
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x : x' = y2 : y'2;
whence
The abscissas of two points on a parabola are to each other

as the squares of the corresponding coördinates, a diameter and
the tangent to the curve at the extremity of the diameter being
the axes of reference.

The last equation may be written
y2 = 2px,

where2pstands fory'2 : x'.
The parabola is thus identified with the curve of the same

name studied in treatises on analytic geometry.

120. Equation of central conics referred to conjugate diam-
eters. Consider now acentral conic, that is, one which is not a
parabola and the center of which is therefore at a finite distance.
Draw any four tangents to it, two of which are parallel (Fig. 31).
Let the parallel tangents meet one of the other tangents inA and
B and the other inC and D, and letP and Q be the points of
contact of the parallel tangentsR andSof the others. ThenAC,
BD, PQ, andRSall meet in a pointW (§ 88). From the figure,

PW : WQ = AP : QC = PD : BQ,
or

AP · BQ = PD · QC. [69]

If now DC is a fixed tangent andAB a variable one, we have
from this equation

AP · BQ =constant.
This constant will be positive or negative according asPA

and BQ are measured in the same or in opposite directions.
Accordingly we write

AP · BQ = ± b2.
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SinceAD andBC are parallel tangents,PQ is a diameter and
the conjugate diameter is parallel toAD. The middle point of
PQ is the center of the conic. We take now for the axis of
abscissas the diameterPQ, and the conjugate diameter for the
axis of ordinates. JoinA to Q andB to P and draw a line through
Sparallel to the axis of ordinates. These three lines all meet in a
point N, becauseAP, BQ, andAB form a triangle circumscribed
to the conic. LetNSmeetPQ in M. Then, from the properties
of the circumscribed triangle (§ 89),M, N, S, and the point at
infinity on NSare four harmonic points, and thereforeN is the
middle point ofMS. If the coördinates ofSare(x, y), so thatOM
is x andMS is y, thenMN = y/2. Now from the similar triangles
PMNandPQBwe have

BQ : PQ = NM : PM,[70]

and from the similar trianglesPQAandMQN,
AP : PQ = MN : MQ,

whence, multiplying, we have
±b2/4 a2 = y2/4 (a + x)(a - x),

where

a =
PQ

2
,

or, simplifying,

x2/a2 + y2/± b2 = 1,

which is the equation of an ellipse whenb2 has a positive sign,
and of a hyperbola whenb2 has a negative sign. We have thus
identified point-rows of the second order with the curves given
by equations of the second degree.
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PROBLEMS

1. Draw a chord of a given conic which shall be bisected by a
given pointP.

2. Show that all chords of a given conic that are bisected by a
given chord are tangent to a parabola.

3. Construct a parabola, given two tangents with their points
of contact.

4. Construct a parabola, given three points and the direction
of the diameters.

5. A line u' is drawn through the poleU of a line u and at
right angles tou. The lineu revolves about a pointP. Show that
the lineu' is tangent to a parabola. (The linesu andu' are called
normal conjugates.)

6. Given a circle and its centerO, to draw a line through a
given pointP parallel to a given lineq. Prove the following
construction: Letp be the polar ofP, Q the pole ofq, andA the
intersection ofp with OQ. The polar ofA is the desired line.
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FIG. 30
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FIG. 31



[71]

CHAPTER VIII - INVOLUTION

FIG. 32
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121. Fundamental theorem. The important theorem con-
cerning two complete quadrangles (§ 26), upon which the theory
of four harmonic points was based, can easily be extended to the
case where the four linesKL, K'L', MN, M'N' do not all meet in
the same pointA, and the more general theorem that results may
also be made the basis of a theory no less important, which has
to do with six points on a line. The theorem is as follows:

Given two complete quadrangles, K, L, M, N and K', L', M',
N', so related that KL and K'L' meet in A, MN and M'N' in A',
KN and K'N' in B, LM and L'M' in B', LN and L'N' in C, and KM
and K'M' in C', then, if A, A', B, B', and C are in a straight line,
the point C' also lies on that straight line.

The theorem follows from Desargues's theorem (Fig. 32). It
is seen thatKK', LL', MM', NN' all meet in a point, and thus,[72]

from the same theorem, applied to the trianglesKLM andK'L'M',
the pointC' is on the same line withA andB'. As in the simpler
case, it is seen that there is an indefinite number of quadrangles
which may be drawn, two sides of which go throughA andA',
two throughB andB', and one throughC. The sixth side must
then go throughC'. Therefore,

122. Two pairs of points, A, A' and B, B', being given, then
the point C' corresponding to any given point C is uniquely
determined.

The construction of this sixth point is easily accomplished.
Draw throughA andA' any two lines, and cut across them by any
line throughC in the pointsL andN. JoinN to B andL to B', thus
determining the pointsK andM on the two lines throughAandA',
The lineKM determines the desired pointC'. Manifestly, starting
from C', we come in this way always to the same pointC. The
particular quadrangle employed is of no consequence. Moreover,
since one pair of opposite sides in a complete quadrangle is not
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distinguishable in any way from any other, the same set of six
points will be obtained by starting from the pairsAA'andCC', or
from the pairsBB' andCC'.

123. Definition of involution of points on a line.
Three pairs of points on a line are said to be in involution if

through each pair may be drawn a pair of opposite sides of a
complete quadrangle. If two pairs are fixed and one of the third
pair describes the line, then the other also describes the line,
and the points of the line are said to be paired in the involution
determined by the two fixed pairs.[73]

FIG. 33
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124. Double-points in an involution. The pointsC and C'
describe projective point-rows, as may be seen by fixing the
pointsL andM. The self-corresponding points, of which there
are two or none, are called thedouble-pointsin the involution.
It is not difficult to see that the double-points in the involution
are harmonic conjugates with respect to corresponding points in
the involution. For, fixing as before the pointsL andM, let the
intersection of the linesCL andC'M be P (Fig. 33). The locus
of P is a conic which goes through the double-points, because
the point-rowsC andC' are projective, and therefore so are the
pencilsLC andMC' which generate the locus ofP. Also, when
C andC' fall together, the pointP coincides with them. Further,
the tangents atL andM to this conic described byP are the lines
LB andMB. For in the pencil atL the rayLM common to the two
pencils which generate the conic is the rayLB' and corresponds
to the rayMB of M, which is therefore the tangent line to the
conic atM. Similarly for the tangentLB atL. LM is therefore the
polar ofB with respect to this conic, andB andB' are therefore
harmonic conjugates with respect to the double-points. The same
discussion applies to any other pair of corresponding points in
the involution. [74]

125. Desargues's theorem concerning conics through four
points. LetDD' be any pair of points in the involution determined
as above, and consider the conic passing through the five points
K, L, M, N, D. We shall use Pascal's theorem to show that this
conic also passes throughD'. The point D' is determined as
follows: Fix L andM as before (Fig. 34) and joinD to L, giving
on MN the pointN'. Join N' to B, giving on LK the pointK'.
ThenMK' determines the pointD' on the lineAA', given by the
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FIG. 34

complete quadrangleK', L, M, N'. Consider the following six
points, numbering them in order:D = 1, D' = 2, M = 3, N = 4, K
= 5, andL = 6. We have the following intersections:B = (12-45),
K' = (23-56), N' = (34-61); and since by constructionB, N, and
K' are on a straight line, it follows from the converse of Pascal's
theorem, which is easily established, that the six points are on a
conic. We have, then, the beautiful theorem due to Desargues:

The system of conics through four points meets any line in the
plane in pairs of points in involution.

126. It appears also that the six points in involution determined
by the quadrangle through the four fixed points belong also to[75]

the same involution with the points cut out by the system of
conics, as indeed we might infer from the fact that the three
pairs of opposite sides of the quadrangle may be considered as
degenerate conics of the system.
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127. Conics through four points touching a given line.It is
further evident that the involution determined on a line by the
system of conics will have a double-point where a conic of the
system is tangent to the line. We may therefore infer the theorem

Through four fixed points in the plane two conics or none may
be drawn tangent to any given line.

128. Double correspondence.We have seen that corresponding
points in an involution form two projective point-rows super-
posed on the same straight line. Two projective point-rows
superposed on the same straight line are, however, not necessar-
ily in involution, as a simple example will show. Take two lines,
a anda', which both revolve about a fixed pointSand which al-
ways make the same angle with each other (Fig. 35). These lines
cut out on any line in the plane which does not pass throughS
two projective point-rows, which are not, however, in involution
unless the angle between the lines is a right angles. For a point
P may correspond to a pointP', which in turn will correspond
to some other point thanP. The peculiarity of point-rows in [76]

involution is that any point will correspond to the same point, in
whichever point-row it is considered as belonging. In this case, if
a pointP corresponds to a pointP', then the pointP' corresponds
back again to the pointP. The pointsP andP' are then said to
correspond doubly. This notion is worthy of further study.

129. Steiner's construction.It will be observed that the solution
of the fundamental problem given in § 83,Given three pairs
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of points of two protective point-rows, to construct other pairs,
cannot be carried out if the two point-rows lie on the same
straight line. Of course the method may be easily altered to cover
that case also, but it is worth while to give another solution of the
problem, due to Steiner, which will also give further information
regarding the theory of involution, and which may, indeed, be
used as a foundation for that theory. Let the two point-rowsA, B,
C, D, ... andA', B', C', D', ... be superposed on the lineu. Project
them both to a pointSand pass any conicº throughS. We thus
obtain two projective pencils,a, b, c, d, ... and a', b', c', d', ... at[77]

S, which meet the conic in the points±, ², ³, ´, ... and±', ²', ³', ´',
... (Fig. 36). Take now³ as the center of a pencil projecting the
points±', ²', ´', ..., and take³' as the center of a pencil projecting
the points±, ², ´, .... These two pencils are projective to each
other, and since they have a self-correspondin ray in common,
they are in perspective position and corresponding rays meet
on the line joining(³±', ³'±) to (³²', ³'²). The correspondence
between points in the two point-rows onu is now easily traced.

130. Application of Steiner's construction to double cor-
respondence. Steiner's construction throws into our hands an
important theorem concerning double correspondence:If two
projective point-rows, superposed on the same line, have one
pair of points which correspond to each other doubly, then all
pairs correspond to each other doubly, and the line is paired in
involution. To make this appear, let us call the pointA on u by
two names,A andP', according as it is thought of as belonging
to the one or to the other of the two point-rows. If this point is
one of a pair which correspond to each other doubly, then the
pointsA' andP must coincide (Fig. 37). Take now any pointC,
which we will also callR'. We must show that the corresponding
point C' must also coincide with the pointB. Join all the points
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to S, as before, and it appears that the points± andÀ' coincide,
as also do the points±'À and³Á'. By the above construction the
line ³'Á must meet³Á' on the line joining(³±', ³'±) with (³À', ³'À).
But these four points form a quadrangle inscribed in the conic,
and we know by § 95 that the tangents at the opposite vertices[78]

³ and ³' meet on the linev. The line ³'Á is thus a tangent to
the conic, andC' andR are the same point. That two projective
point-rows superposed on the same line are also in involution
when one pair, and therefore all pairs, correspond doubly may be
shown by takingSat one vertex of a complete quadrangle which
has two pairs of opposite sides going through two pairs of points.
The details we leave to the student.

131. Involution of points on a point-row of the second order.
It is important to note also, in Steiner's construction, that we have
obtained two point-rows of the second order superposed on the
same conic, and have paired the points of one with the points
of the other in such a way that the correspondence is double.
We may then extend the notion of involution to point-rows of
the second order and say thatthe points of a conic are paired in
involution when they are corresponding points of two projective[79]

point-rows superposed on the conic, and when they correspond
to each other doubly.With this definition we may prove the
theorem:The lines joining corresponding points of a point-row
of the second order in involution all pass through a fixed point U,
and the line joining any two points A, B meets the line joining the
two corresponding points A', B' in the points of a line u, which is
the polar of U with respect to the conic.For takeA andA' as the
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centers of two pencils, the first perspective to the point-rowA',
B', C' and the second perspective to the point-rowA, B, C. Then,
since the common ray of the two pencils corresponds to itself,
they are in perspective position, and their axis of perspectivityu
(Fig. 38) is the line which joins the point(AB', A'B)to the point
(AC', A'C). It is then immediately clear, from the theory of poles
and polars, thatBB' andCC' pass through the poleU of the line
u.

132. Involution of rays. The whole theory thus far developed
may be dualized, and a theory of lines in involution may be built
up, starting with the complete quadrilateral. Thus,

The three pairs of rays which may be drawn from a point
through the three pairs of opposite vertices of a complete quadri-
lateral are said to be in involution. If the pairs aa' and bb' are
fixed, and the line c describes a pencil, the corresponding line c'
also describes a pencil, and the rays of the pencil are said to be
paired in the involution determined by aa' and bb'.[80]

133. Double rays. The self-corresponding rays, of which
there are two or none, are calleddouble raysof the involution.
Corresponding rays of the involution are harmonic conjugates
with respect to the double rays. To the theorem of Desargues
(§ 125) which has to do with the system of conics through four
points we have the dual:

The tangents from a fixed point to a system of conics tangent
to four fixed lines form a pencil of rays in involution.
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134. If a conic of the system should go through the fixed point,
it is clear that the two tangents would coincide and indicate a
double ray of the involution. The theorem, therefore, follows:

Two conics or none may be drawn through a fixed point to be
tangent to four fixed lines.

135. Double correspondence. It further appears that two
projective pencils of rays which have the same center are in
involution if two pairs of rays correspond to each other doubly.
From this it is clear that we might have deemed six rays in
involution as six rays which pass through a point and also through
six points in involution. While this would have been entirely
in accord with the treatment which was given the corresponding
problem in the theory of harmonic points and lines, it is more
satisfactory, from an aesthetic point of view, to build the theory
of lines in involution on its own base. The student can show, by
methods entirely analogous to those used in the second chapter,
that involution is a projective property; that is, six rays in
involution are cut by any transversal in six points in involution.[81]

136. Pencils of rays of the second order in involution.We
may also extend the notion of involution to pencils of rays of
the second order. Thus,the tangents to a conic are in involution
when they are corresponding rays of two protective pencils of the
second order superposed upon the same conic, and when they
correspond to each other doubly.We have then the theorem:

137. The intersections of corresponding rays of a pencil of
the second order in involution are all on a straight line u,
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and the intersection of any two tangents ab, when joined to the
intersection of the corresponding tangents a'b', gives a line which
passes through a fixed point U, the pole of the line u with respect
to the conic.

138. Involution of rays determined by a conic.We have seen
in the theory of poles and polars (§ 103) that if a pointP moves
along a linem, then the polar ofP revolves about a point. This
pencil cuts out onm another point-rowP', projective also to
P. Since the polar ofP passes throughP', the polar ofP' also
passes throughP, so that the correspondence betweenP andP' is
double. The two point-rows are therefore in involution, and the
double points, if any exist, are the points where the linem meets
the conic. A similar involution of rays may be found at any point
in the plane, corresponding rays passing each through the pole
of the other. We have called such points and raysconjugatewith
respect to the conic (§ 100). We may then state the following
important theorem:

139.A conic determines on every line in its plane an involution of
points, corresponding points in the involution being conjugate[82]

with respect to the conic. The double points, if any exist, are the
points where the line meets the conic.

140.The dual theorem reads:A conic determines at every point
in the plane an involution of rays, corresponding rays being
conjugate with respect to the conic. The double rays, if any exist,
are the tangents from the point to the conic.
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PROBLEMS

1. Two lines are drawn through a point on a conic so as always
to make right angles with each other. Show that the lines joining
the points where they meet the conic again all pass through a
fixed point.

2. Two lines are drawn through a fixed point on a conic so
as always to make equal angles with the tangent at that point.
Show that the lines joining the two points where the lines meet
the conic again all pass through a fixed point.

3. Four lines divide the plane into a certain number of regions.
Determine for each region whether two conics or none may be
drawn to pass through points of it and also to be tangent to the
four lines.

4. If a variable quadrangle move in such a way as always to
remain inscribed in a fixed conic, while three of its sides turn
each around one of three fixed collinear points, then the fourth
will also turn around a fourth fixed point collinear with the other
three.

5. State and prove the dual of problem 4.
6. Extend problem 4 as follows: If a variable polygon of an

even number of sides move in such a way as always to remain
inscribed in a fixed conic, while all its sides but one pass through
as many fixed collinear points, then the last side will also pass
through a fixed point collinear with the others. [83]

7. If a triangleQRSbe inscribed in a conic, and if a transversal
s meet two of its sides inA andA', the third side and the tangent
at the opposite vertex inB andB', and the conic itself inC and
C', thenAA', BB', CC' are three pairs of points in an involution.

8. Use the last exercise to solve the problem: Given five
points,Q, R, S, C, C', on a conic, to draw the tangent at any one
of them.

9. State and prove the dual of problem 7 and use it to prove
the dual of problem 8.
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10. If a transversal cut two tangents to a conic inB andB',
their chord of contact inA, and the conic itself inP andP', then
the pointA is a double point of the involution determined byBB'
andPP'.

11. State and prove the dual of problem 10.
12. If a variable conic pass through two given points,P and

P', and if it be tangent to two given lines, the chord of contact of
these two tangents will always pass through a fixed point onPP'.

13. Use the last theorem to solve the problem: Given four
points,P, P', Q, S, on a conic, and the tangent at one of them,Q,
to draw the tangent at any one of the other points,S.

14. Apply the theorem of problem 9 to the case of a hyperbola
where the two tangents are the asymptotes. Show in this way
that if a hyperbola and its asymptotes be cut by a transversal,
the segments intercepted by the curve and by the asymptotes
respectively have the same middle point.

15. In a triangle circumscribed about a conic, any side is
divided harmonically by its point of contact and the point where
it meets the chord joining the points of contact of the other two
sides.
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FIG. 36

FIG. 37
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CHAPTER IX - METRICAL
PROPERTIES OF INVOLUTIONS

FIG. 39
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141. Introduction of infinite point; center of involution.
We connect the projective theory of involution with the metrical,
as usual, by the introduction of the elements at infinity. In an
involution of points on a line the point which corresponds to
the infinitely distant point is called thecenterof the involution.
Since corresponding points in the involution have been shown
to be harmonic conjugates with respect to the double points, the
center is midway between the double points when they exist. To
construct the center (Fig. 39) we draw as usual throughA andA'
any two rays and cut them by a line parallel toAA' in the points
K andM. Join these points toB andB', thus determining onAK
andAN the pointsL andN. LN meetsAA' in the centerO of the
involution. [85]

142. Fundamental metrical theorem. From the figure we
see that the trianglesOLB' and PLM are similar,P being the
intersection of KM and LN. Also the trianglesKPNandBONare
similar. We thus have

OB : PK = ON : PN
and

OB' : PM = OL : PL;
whence

OB · OB' : PK · PM = ON · OL : PN · PL.
In the same way, from the similar trianglesOALandPKL, and

alsoOA'NandPMN, we obtain
OA · OA' : PK · PM = ON · OL : PN · PL,

and this, with the preceding, gives at once the fundamental
theorem, which is sometimes taken also as the definition of
involution:

OA · OA' = OB · OB' =constant,
or, in words,
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The product of the distances from the center to two corre-
sponding points in an involution of points is constant.

143. Existence of double points.Clearly, according as the
constant is positive or negative the involution will or will not
have double points. The constant is the square root of the distance
from the center to the double points. IfA andA' lie both on the
same side of the center, the productOA · OA'is positive; and if
they lie on opposite sides, it is negative. Take the case where
they both lie on the same side of the center, and take also the pair
of corresponding pointsBB'. Then, sinceOA · OA' = OB · OB', it
cannot happen thatB andB' are separated from each other byA
andA'. This is evident enough if the points are on opposite sides
of the center. If the pairs are on the same side of the center,[86]

and B lies betweenA and A', so thatOB is greater, say, than
OA, but less thanOA', then, by the equationOA · OA' = OB ·
OB', we must haveOB' also less thanOA' and greater thanOA.
A similar discussion may be made for the case whereA andA'
lie on opposite sides ofO. The results may be stated as follows,
without any reference to the center:

Given two pairs of points in an involution of points, if the
points of one pair are separated from each other by the points of
the other pair, then the involution has no double points. If the
points of one pair are not separated from each other by the points
of the other pair, then the involution has two double points.

144.An entirely similar criterion decides whether an involution
of rays has or has not double rays, or whether an involution of
planes has or has not double planes.
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FIG. 40

145. Construction of an involution by means of circles.The
equation just derived,OA · OA' = OB · OB', indicates another
simple way in which points of an involution of points may be
constructed. ThroughA andA' draw any circle, and draw also
any circle throughB andB' to cut the first in the two pointsG and
G' (Fig. 40). Then any circle throughG andG' will meet the line
in pairs of points in the involution determined byAA' andBB'.
For if such a circle meets the line in the pointsCC', then, by the
theorem in the geometry of the circle which says thatif any chord
is drawn through a fixed point within a circle, the product of its[87]

segments is constant in whatever direction the chord is drawn,
and if a secant line be drawn from a fixed point without a circle,
the product of the secant and its external segment is constant in
whatever direction the secant line is drawn, we haveOC · OC'
= OG · OG' = constant. So that for all such pointsOA · OA'
= OB · OB' = OC · OC'. Further, the lineGG' meetsAA' in the
center of the involution. To find the double points, if they exist,
we draw a tangent fromO to any of the circles throughGG'. Let
T be the point of contact. Then lay off on the lineOA a lineOF
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equal toOT. Then, since by the above theorem of elementary
geometryOA · OA' = OT2 = OF2, we have one double pointF.
The other is at an equal distance on the other side ofO. This
simple and effective method of constructing an involution of
points is often taken as the basis for the theory of involution. In
projective geometry, however, the circle, which is not a figure
that remains unaltered by projection, and is essentially a metrical
notion, ought not to be used to build up the purely projective part
of the theory.

146.It ought to be mentioned that the theory of analytic geometry
indicates that the circle is a special conic section that happens
to pass through two particular imaginary points on the line at
infinity, called thecircular pointsand usually denoted byI and
J. The above method of obtaining a point-row in involution is,
then, nothing but a special case of the general theorem of the
last chapter (§ 125), which asserted that a system of conics
through four points will cut any line in the plane in a point-row
in involution.[88]

FIG. 41
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147. Pairs in an involution of rays which are at right angles.
Circular involution. In an involution of rays there is no one ray
which may be distinguished from all the others as the point at
infinity is distinguished from all other points on a line. There is
one pair of rays, however, which does differ from all the others
in that for this particular pair the angle is a right angle. This is
most easily shown by using the construction that employs circles,
as indicated above. The centers of all the circles throughG and
G' lie on the perpendicular bisector of the lineGG'. Let this line
meet the lineAA' in the pointC (Fig. 41), and draw the circle
with centerC which goes throughG and G'. This circle cuts
out two pointsM and M' in the involution. The raysGM and
GM' are clearly at right angles, being inscribed in a semicircle.
If, therefore, the involution of points is projected toG, we have
found two corresponding rays which are at right angles to each
other. Given now any involution of rays with centerG, we may
cut across it by a straight line and proceed to find the two points
M and M'. Clearly there will be only one such pair unless the
perpendicular bisector ofGG' coincides with the lineAA'. In this
case every ray is at right angles to its corresponding ray, and the
involution is calledcircular.

148. Axes of conics.At the close of the last chapter (§ 140)
we gave the theorem:A conic determines at every point in its
plane an involution of rays, corresponding rays being conjugate[89]

with respect to the conic. The double rays, if any exist, are the
tangents from the point to the conic.In particular, taking the
point as the center of the conic, we find that conjugate diameters
form a system of rays in involution, of which the asymptotes,
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if there are any, are the double rays. Also, conjugate diameters
are harmonic conjugates with respect to the asymptotes. By the
theorem of the last paragraph, there are two conjugate diameters
which are at right angles to each other. These are called axes. In
the case of the parabola, where the center is at infinity, and on
the curve, there are, properly speaking, no conjugate diameters.
While the line at infinity might be considered as conjugate to all
the other diameters, it is not possible to assign to it any particular
direction, and so it cannot be used for the purpose of defining
an axis of a parabola. There is one diameter, however, which
is at right angles to its conjugate system of chords, and this one
is called theaxis of the parabola. The circle also furnishes an
exception in that every diameter is an axis. The involution in this
case is circular, every ray being at right angles to its conjugate
ray at the center.

149. Points at which the involution determined by a conic
is circular. It is an important problem to discover whether for
any conic other than the circle it is possible to find any point in
the plane where the involution determined as above by the conic
is circular. We shall proceed to the curious problem of proving
the existence of such points and of determining their number and
situation. We shall then develop the important properties of such
points.[90]

150. It is clear, in the first place, that such a point cannot be on
the outside of the conic, else the involution would have double
rays and such rays would have to be at right angles to themselves.
In the second place, if two such points exist, the line joining
them must be a diameter and, indeed, an axis. For ifF andF'
were two such points, then, since the conjugate ray atF to the
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line FF' must be at right angles to it, and also since the conjugate
ray atF' to the lineFF' must be at right angles to it, the pole
of FF' must be at infinity in a direction at right angles toFF'.
The lineFF' is then a diameter, and since it is at right angles to
its conjugate diameter, it must be an axis. From this it follows
also that the points we are seeking must all lie on one of the two
axes, else we should have a diameter which does not go through
the intersection of all axes—the center of the conic. At least one
axis, therefore, must be free from any such points.

FIG. 42
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151.Let nowP be a point on one of the axes (Fig. 42), and draw
any ray through it, such asq. As q revolves aboutP, its poleQ
moves along a line at right angles to the axis on whichP lies,
describing a point-rowp projective to the pencil of raysq. The
point at infinity in a direction at right angles toq also describes a
point-row projective toq. The line joining corresponding points
of these two point-rows is always a conjugate line toq and at
right angles toq, or, as we may call it, aconjugate normalto q.
These conjugate normals toq, joining as they do corresponding
points in two projective point-rows, form a pencil of rays of the
second order. But since the point at infinity on the point-rowQ[91]

corresponds to the point at infinity in a direction at right angles
to q, these point-rows are in perspective position and the normal
conjugates of all the lines throughP meet in a point. This point
lies on the same axis withP, as is seen by takingq at right angles
to the axis on whichP lies. The center of this pencil may be
calledP', and thus we have paired the pointP with the pointP'.
By moving the pointP along the axis, and by keeping the ray
q parallel to a fixed direction, we may see that the point-rowP
and the point-rowP' are projective. Also the correspondence is
double, and by starting from the pointP' we arrive at the pointP.
Therefore the point-rowsP andP' are in involution, and if only
the involution has double points, we shall have found in them
the points we are seeking. For it is clear that the rays through
P and the corresponding rays throughP' are conjugate normals;
and if P andP' coincide, we shall have a point where all rays
are at right angles to their conjugates. We shall now show that
the involution thus obtained on one of the two axes must have
double points.
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FIG. 43

152. Discovery of the foci of the conic.We know that on
one axis no such points as we are seeking can lie (§ 150). The
involution of pointsPP' on this axis can therefore have no[92]

double points. Nevertheless, letPP' and RR' be two pairs of
corresponding points on this axis (Fig. 43). Then we know thatP
andP' are separated from each other byRandR' (§ 143). Draw a
circle onPP' as a diameter, and one onRR'as a diameter. These
must intersect in two points,F andF', and since the center of
the conic is the center of the involutionPP', RR', as is easily
seen, it follows thatF andF' are on the other axis of the conic.
Moreover,FR andFR' are conjugate normal rays, sinceRFR' is
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inscribed in a semicircle, and the two rays go one throughR and
the other throughR'. The involution of pointsPP', RR'therefore
projects to the two pointsF and F' in two pencils of rays in
involution which have for corresponding rays conjugate normals
to the conic. We may, then, say:

There are two and only two points of the plane where the
involution determined by the conic is circular. These two points
lie on one of the axes, at equal distances from the center, on the
inside of the conic. These points are called the foci of the conic.

153. The circle and the parabola.The above discussion applies
only to the central conics, apart from the circle. In the circle the
two foci fall together at the center. In the case of the parabola,
that part of the investigation which proves the existence of two
foci on one of the axes will not hold, as we have but one axis. It[93]

is seen, however, that asP moves to infinity, carrying the lineq
with it, q becomes the line at infinity, which for the parabola is
a tangent line. Its poleQ is thus at infinity and also the pointP',
so thatP andP' fall together at infinity, and therefore one focus
of the parabola is at infinity. There must therefore be another, so
that

A parabola has one and only one focus in the finite part of the
plane.

154. Focal properties of conics.We proceed to develop some
theorems which will exhibit the importance of these points in the
theory of the conic section. Draw a tangent to the conic, and also
the normal at the point of contactP. These two lines are clearly
conjugate normals. The two pointsTandN, therefore, where they
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FIG. 44

meet the axis which contains the foci, are corresponding points
in the involution considered above, and are therefore harmonic
conjugates with respect to the foci (Fig. 44); and if we join them
to the pointP, we shall obtain four harmonic lines. But two of
them are at right angles to each other, and so the others make
equal angles with them (Problem 4, Chapter II). Therefore

The lines joining a point on the conic to the foci make equal
angles with the tangent.

It follows that rays from a source of light at one focus are
reflected by an ellipse to the other. [94]

155. In the case of the parabola, where one of the foci must be
considered to be at infinity in the direction of the diameter, we
have
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FIG. 45

A diameter makes the same angle with the tangent at its
extremity as that tangent does with the line from its point of
contact to the focus (Fig. 45).

156. This last theorem is the basis for the construction of the
parabolic reflector. A ray of light from the focus is reflected from
such a reflector in a direction parallel to the axis of the reflector.

157. Directrix. Principal axis. Vertex. The polar of the focus
with respect to the conic is called thedirectrix. The axis which
contains the foci is called theprincipal axis, and the intersection
of the axis with the curve is called thevertexof the curve. The
directrix is at right angles to the principal axis. In a parabola
the vertex is equally distant from the focus and the directrix,
these three points and the point at infinity on the axis being
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four harmonic points. In the ellipse the vertex is nearer to the
focus than it is to the directrix, for the same reason, and in the
hyperbola it is farther from the focus than it is from the directrix.

FIG. 46
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158. Another definition of a conic. Let P be any point on the
directrix through which a line is drawn meeting the conic in the
pointsA andB (Fig. 46). Let the tangents atA andB meet in
T, and call the focusF. ThenTF and PF are conjugate lines,
and as they pass through a focus they must be at right angles
to each other. LetTF meetAB in C. ThenP, A, C, B are four[95]

harmonic points. Project these four points parallel toTF upon
the directrix, and we then get the four harmonic pointsP, M,
Q, N. Since, now,TFP is a right angle, the anglesMFQ and
NFQ are equal, as well as the anglesAFC andBFC. Therefore
the trianglesMAF andNFB are similar, andFA : FM = FB :
BN. Dropping perpendicularsAAandBB' upon the directrix, this
becomesFA : AA' = FB : BB'. We have thus the property often
taken as the definition of a conic:

The ratio of the distances from a point on the conic to the
focus and the directrix is constant.

FIG. 47



159. Eccentricity 119

159. Eccentricity.By taking the point at the vertex of the conic,
we note that this ratio is less than unity for the ellipse, greater
than unity for the hyperbola, and equal to unity for the parabola.
This ratio is called theeccentricity.

FIG. 48

160. Sum or difference of focal distances.The ellipse and the
hyperbola have two foci and two directrices. The eccentricity, of
course, is the same for one focus as for the other, since the curve
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is symmetrical with respect to both. If the distances from a point[96]

on a conic to the two foci arer and r', and the distances from
the same point to the corresponding directrices ared andd' (Fig.
47), we haver : d = r' : d' ; (r ± r') : (d ± d') . In the ellipse(d +
d') is constant, being the distance between the directrices. In the
hyperbola this distance is(d - d'). It follows (Fig. 48) that

In the ellipse the sum of the focal distances of any point on the
curve is constant, and in the hyperbola the difference between
the focal distances is constant.

PROBLEMS

1. Construct the axis of a parabola, given four tangents.
2. Given two conjugate lines at right angles to each other, and

let them meet the axis which has no foci on it in the pointsA and
B. The circle onAB as diameter will pass through the foci of the
conic.

3. Given the axes of a conic in position, and also a tangent
with its point of contact, to construct the foci and determine the
length of the axes.

4. Given the tangent at the vertex of a parabola, and two other
tangents, to find the focus.

5. The locus of the center of a circle touching two given circles
is a conic with the centers of the given circles for its foci.

6. Given the axis of a parabola and a tangent, with its point of
contact, to find the focus.[97]

7. The locus of the center of a circle which touches a given
line and a given circle consists of two parabolas.

8. LetF andF' be the foci of an ellipse, andP any point on it.
ProducePF to G, makingPGequal toPF'. Find the locus ofG.

9. If the pointsG of a circle be folded over upon a pointF, the
creases will all be tangent to a conic. IfF is within the circle, the
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conic will be an ellipse; ifF is without the circle, the conic will
be a hyperbola.

10. If the pointsG in the last example be taken on a straight
line, the locus is a parabola.

11. Find the foci and the length of the principal axis of the
conics in problems 9 and 10.

12. In problem 10 a correspondence is set up between straight
lines and parabolas. As there is a fourfold infinity of parabolas in
the plane, and only a twofold infinity of straight lines, there must
be some restriction on the parabolas obtained by this method.
Find and explain this restriction.

13. State and explain the similar problem for problem 9.
14. The last four problems are a study of the consequences

of the following transformation: A pointO is fixed in the plane.
Then to any pointP is made to correspond the linepat right angles
to OP and bisecting it. In this correspondence, what happens to
p whenP moves along a straight line? What corresponds to the
theorem that two lines have only one point in common? What to
the theorem that the angle sum of a triangle is two right angles?
Etc.
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CHAPTER X - ON THE HISTORY
OF SYNTHETIC PROJECTIVE
GEOMETRY

161. Ancient results. The theory of synthetic projective
geometry as we have built it up in this course is less than a
century old. This is not to say that many of the theorems
and principles involved were not discovered much earlier, but
isolated theorems do not make a theory, any more than a pile of
bricks makes a building. The materials for our building have been
contributed by many different workmen from the days of Euclid
down to the present time. Thus, the notion of four harmonic points
was familiar to the ancients, who considered it from the metrical
point of view as the division of a line internally and externally
in the same ratio1 the involution of six points cut out by any

1 The more general notion ofanharmonic ratio, which includes the harmonic
ratio as a special case, was also known to the ancients. While we have not
found it necessary to make use of the anharmonic ratio in building up our
theory, it is so frequently met with in treatises on geometry that some account
of it should be given.

Consider any four points,A, B, C, D, on a line, and join them to any pointS
not on that line. Then the trianglesASB, GSD, ASD, CSB, having all the same
altitude, are to each other as their bases. Also, since the area of any triangle is
one half the product of any two of its sides by the sine of the angle included
between them, we have
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transversal which intersects the sides of a complete quadrilateral
as studied by Pappus2; but these notions were not made the

(ABCD) = (BADC) = (CDAB) = (DCBA). If we write (ABCD) = a, it is not
difficult to show that the six values are

a; 1/a; 1− a; 1/(1− a); (a− 1)/a; a/(a− 1).

The proof of this we leave to the student.
If A, B, C, D are four harmonic points (see Fig. 6, p. *22), and a quadrilateral

KLMN is constructed such thatKL andMN pass throughA, KN andLM through
C, LN throughB, andKM throughD, then, projectingA, B, C, D from L upon
KM, we have(ABCD) = (KOMD), whereO is the intersection ofKM with LN.
But, projecting again the pointsK, O, M, D from N back upon the lineAB, we
have(KOMD) = (CBAD). From this we have

(ABCD) = (CBAD),
or

a = a/(a− 1);

whencea = 0 or a = 2. But it is easy to see thata = 0 implies that two of
the four points coincide. For four harmonic points, therefore, the six values of
the anharmonic ratio reduce to three, namely, 2,1

2
, and -1. Incidentally we see

that if an interchange of any two points in an anharmonic ratio does not change
its value, then the four points are harmonic.
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FIG.{FNS 49

foundation for any general theory. Taken by themselves, they
are of small consequence; it is their relation to other theorems
and sets of theorems that gives them their importance. The
ancients were doubtless familiar with the theorem,Two lines
determine a point, and two points determine a line, but they
had no glimpse of the wonderful law of duality, of which this
theorem is a simple example. The principle of projection, by
which many properties of the conic sections may be inferred
from corresponding properties of the circle which forms the base
of the cone from which they are cut—a principle so natural
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Many theorems of projective geometry are succinctly stated in terms of
anharmonic ratios. Thus, theanharmonic ratio of any four elements of a form
is equal to the anharmonic ratio of the corresponding four elements in any
form projectively related to it. The anharmonic ratio of the lines joining any
four fixed points on a conic to a variable fifthpoint on the conic is constant.
The locus of points from which four points in a plane are seen along four rays
of constant anharmonic ratio is a conic through the four points.We leave these
theorems for the student, who may also justify the following solution of the
problem:Given three points and a certain anharmonic ratio, to find a fourth
point which shall have with the given three the given anharmonic ratio.Let A,
B, D be the three given points (Fig. 49). On any convenient line throughA take
two pointsB' andD' such thatAB'/AD' is equal to the given anharmonic ratio.
JoinBB' andDD' and let the two lines meet inS. Draw throughSa parallel to
AB'. This line will meetAB in the required pointC.

AB × CD

AD × CB
=

AS ×BS sin ASB × CS ×DS sin CSD

AS ×DS sin ASD × CS ×BS sin CSB
=

sin ASB × sin CSD

sin ASD × sin CSB

Now the fraction on the right would be unchanged if instead of the points
A, B, C, D we should take any other four pointsA', B', C', D' lying on any
other line cutting acrossSA, SB, SC, SD. In other words,the fraction on the
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to modern mathematicians—seems not to have occurred to the
Greeks. The ellipse, the hyperbola, and the parabola were to them[100]

entirely different curves, to be treated separately with methods
appropriate to each. Thus the focus of the ellipse was discovered
some five hundred years before the focus of the parabola! It was
not till 1522 that Verner3 of Nürnberg undertook to demonstrate
the properties of the conic sections by means of the circle.

162. Unifying principles. In the early years of the seventeenth
century—that wonderful epoch in the history of the world which
produced a Galileo, a Kepler, a Tycho Brahe, a Descartes, a
Desargues, a Pascal, a Cavalieri, a Wallis, a Fermat, a Huygens,
a Bacon, a Napier, and a goodly array of lesser lights, to say
nothing of a Rembrandt or of a Shakespeare—there began to
appear certain unifying principles connecting the great mass
of material dug out by the ancients. Thus, in 1604 the great

left is unaltered in value if the points A, B, C, D are replaced by any other four
points perspective to them.Again, the fraction on the left is unchanged if some
other point were taken instead ofS. In other words,the fraction on the right is
unaltered if we replace the four lines SA, SB, SC, SD by any other four lines
perspective to them.The fraction on the left is called theanharmonic ratioof
the four pointsA, B, C, D; the fraction on the right is called theanharmonic
ratio of the four linesSA, SB, SC, SD. The anharmonic ratio of four points is
sometimes written (ABCD), so that

AB × CD

AD × CB
= (ABCD).

If we take the points in different order, the value of the anharmonic ratio
will not necessarily remain the same. The twenty-four different ways of writing
them will, however, give not more than six different values for the anharmonic
ratio, for by writing out the fractions which define them we can find that

2 Pappus, Mathematicae Collectiones, vii, 129.
3 J. Verneri, Libellus super vigintiduobus elementis conicis, etc. 1522.
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astronomer Kepler4 introduced the notion that parallel lines
should be considered as meeting at an infinite distance, and that
a parabola is at once the limiting case of an ellipse and of a
hyperbola. He also attributes to the parabola a "blind focus"
(caecus focus) at infinity on the axis.

163. Desargues.In 1639 Desargues,5 an architect of Lyons,
published a little treatise on the conic sections, in which appears
the theorem upon which we have founded the theory of four
harmonic points (§ 25). Desargues, however, does not make[101]

use of it for that purpose. Four harmonic points are for him a
special case of six points in involution when two of the three
pairs coincide giving double points. His development of the
theory of involution is also different from the purely geometric
one which we have adopted, and is based on the theorem (§ 142)
that the product of the distances of two conjugate points from the
center is constant. He also proves the projective character of an
involution of points by showing that when six lines pass through
a point and through six points in involution, then any transversal
must meet them in six points which are also in involution.

164. Poles and polars.In this little treatise is also contained
the theory of poles and polars. The polar line is called a
traversal.6 The harmonic properties of poles and polars are

4 Kepler, Ad Vitellionem paralipomena quibus astronomiae pars optica
traditur. 1604.

5 Desargues, Bruillon-project d'une atteinte aux événements des rencontres
d'un cône avec un plan. 1639. Edited and analyzed by Poudra, 1864.

6 The term 'pole' was first introduced, in the sense in which we have used
it, in 1810, by a French mathematician named Servois (Gergonne,Annales
des Mathéématiques, I, 337), and the corresponding term 'polar' by the editor,
Gergonne, of this same journal three years later.



128 An Elementary Course in Synthetic Projective Geometry

given, but Desargues seems not to have arrived at the metrical
properties which result when the infinite elements of the plane
are introduced. Thus he says, "When thetraversalis at an infinite
distance, all is unimaginable."

165. Desargues's theorem concerning conics through four
points. We find in this little book the beautiful theorem concern-
ing a quadrilateral inscribed in a conic section, which is given
by his name in § 138. The theorem is not given in terms of
a system of conics through four points, for Desargues had no
conception of any such system. He states the theorem, in effect,[102]

as follows: Given a simple quadrilateral inscribed in a conic
section, every transversal meets the conic and the four sides of
the quadrilateral in six points which are in involution.

166. Extension of the theory of poles and polars to space.
As an illustration of his remarkable powers of generalization, we
may note that Desargues extended the notion of poles and polars
to space of three dimensions for the sphere and for certain other
surfaces of the second degree. This is a matter which has not
been touched on in this book, but the notion is not difficult to
grasp. If we draw through any pointP in space a line to cut
a sphere in two points,A and S, and then construct the fourth
harmonic ofP with respect toA andB, the locus of this fourth
harmonic, for various lines throughP, is a plane called thepolar
planeof P with respect to the sphere. With this definition and
theorem one can easily find dual relations between points and
planes in space analogous to those between points and lines in
a plane. Desargues closes his discussion of this matter with
the remark, "Similar properties may be found for those other
solids which are related to the sphere in the same way that the
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conic section is to the circle." It should not be inferred from this
remark, however, that he was acquainted with all the different
varieties of surfaces of the second order. The ancients were well
acquainted with the surfaces obtained by revolving an ellipse or
a parabola about an axis. Even the hyperboloid of two sheets,
obtained by revolving the hyperbola about its major axis, was
known to them, but probably not the hyperboloid of one sheet,
which results from revolving a hyperbola about the other axis.[103]

All the other solids of the second degree were probably unknown
until their discovery by Euler.7

167. Desargues had no conception of the conic section of the
locus of intersection of corresponding rays of two projective
pencils of rays. He seems to have tried to describe the curve by
means of a pair of compasses, moving one leg back and forth
along a straight line instead of holding it fixed as in drawing a
circle. He does not attempt to define the law of the movement
necessary to obtain a conic by this means.

168. Reception of Desargues's work.Strange to say, Desar-
gues's immortal work was heaped with the most violent abuse
and held up to ridicule and scorn! "Incredible errors! Enormous
mistakes and falsities! Really it is impossible for anyone who is
familiar with the science concerning which he wishes to retail his
thoughts, to keep from laughing!" Such were the comments of
reviewers and critics. Nor were his detractors altogether ignorant
and uninstructed men. In spite of the devotion of his pupils and
in spite of the admiration and friendship of men like Descartes,

7 Euler, Introductio in analysin infinitorum, Appendix, cap. V. 1748.
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Fermat, Mersenne, and Roberval, his book disappeared so com-
pletely that two centuries after the date of its publication, when
the French geometer Chasles wrote his history of geometry,
there was no means of estimating the value of the work done by
Desargues. Six years later, however, in 1845, Chasles found a
manuscript copy of the "Bruillon-project," made by Desargues's
pupil, De la Hire.[104]

169. Conservatism in Desargues's time.It is not necessary
to suppose that this effacement of Desargues's work for two
centuries was due to the savage attacks of his critics. All this was
in accordance with the fashion of the time, and no man escaped
bitter denunciation who attempted to improve on the methods
of the ancients. Those were days when men refused to believe
that a heavy body falls at the same rate as a lighter one, even
when Galileo made them see it with their own eyes at the foot
of the tower of Pisa. Could they not turn to the exact page and
line of Aristotle which declared that the heavier body must fall
the faster! "I have read Aristotle's writings from end to end,
many times," wrote a Jesuit provincial to the mathematician and
astronomer, Christoph Scheiner, at Ingolstadt, whose telescope
seemed to reveal certain mysterious spots on the sun, "and I can
assure you I have nowhere found anything similar to what you
describe. Go, my son, and tranquilize yourself; be assured that
what you take for spots on the sun are the faults of your glasses,
or of your eyes." The dead hand of Aristotle barred the advance in
every department of research. Physicians would have nothing to
do with Harvey's discoveries about the circulation of the blood.
"Nature is accused of tolerating a vacuum!" exclaimed a priest
when Pascal began his experiments on the Puy-de-Dome to show
that the column of mercury in a glass tube varied in height with
the pressure of the atmosphere.
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170. Desargues's style of writing. Nevertheless, authority
counted for less at this time in Paris than it did in Italy, and the
tragedy enacted in Rome when Galileo was forced to deny his[105]

inmost convictions at the bidding of a brutal Inquisition could not
have been staged in France. Moreover, in the little company of
scientists of which Desargues was a member the utmost liberty
of thought and expression was maintained. One very good reason
for the disappearance of the work of Desargues is to be found in
his style of writing. He failed to heed the very good advice given
him in a letter from his warm admirer Descartes.8 "You may
have two designs, both very good and very laudable, but which
do not require the same method of procedure: The one is to write
for the learned, and show them some new properties of the conic
sections which they do not already know; and the other is to
write for the curious unlearned, and to do it so that this matter
which until now has been understood by only a very few, and
which is nevertheless very useful for perspective, for painting,
architecture, etc., shall become common and easy to all who
wish to study them in your book. If you have the first idea, then
it seems to me that it is necessary to avoid using new terms; for
the learned are already accustomed to using those of Apollonius,
and will not readily change them for others, though better, and
thus yours will serve only to render your demonstrations more
difficult, and to turn away your readers from your book. If
you have the second plan in mind, it is certain that your terms,
which are French, and conceived with spirit and grace, will be
better received by persons not preoccupied with those of the
ancients.... But, if you have that intention, you should make
of it a great volume; explain it all so fully and so distinctly[106]

that those gentlemen who cannot study without yawning; who
cannot distress their imaginations enough to grasp a proposition
in geometry, nor turn the leaves of a book to look at the letters

8 Œuvres de Desargues, t. II, 132.
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in a figure, shall find nothing in your discourse more difficult to
understand than the description of an enchanted palace in a fairy
story." The point of these remarks is apparent when we note that
Desargues introduced some seventy new terms in his little book,
of which only one,involution, has survived. Curiously enough,
this is the one term singled out for the sharpest criticism and
ridicule by his reviewer, De Beaugrand.9 That Descartes knew
the character of Desargues's audience better than he did is also
evidenced by the fact that De Beaugrand exhausted his patience
in reading the first ten pages of the book.

171. Lack of appreciation of Desargues.Desargues's meth-
ods, entirely different from the analytic methods just then being
developed by Descartes and Fermat, seem to have been lit-
tle understood. "Between you and me," wrote Descartes10 to
Mersenne, "I can hardly form an idea of what he may have
written concerning conics." Desargues seems to have boasted
that he owed nothing to any man, and that all his results had
come from his own mind. His favorite pupil, De la Hire, did not
realize the extraordinary simplicity and generality of his work.
It is a remarkable fact that the only one of all his associates to
understand and appreciate the methods of Desargues should be a
lad of sixteen years![107]

172. Pascal and his theorem.One does not have to believe all
the marvelous stories of Pascal's admiring sisters to credit him
with wonderful precocity. We have the fact that in 1640, when
he was sixteen years old, he published a little placard, or poster,

9 Œuvres de Desargues, t. II, 370.
10Œuvres de Descartes, t. II, 499.
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entitled "Essay pour les conique,"11 in which his great theorem
appears for the first time. His manner of putting it may be a little
puzzling to one who has only seen it in the form given in this
book, and it may be worth while for the student to compare the
two methods of stating it. It is given as follows:"If in the plane
of M, S, Q we draw through M the two lines MK and MV, and
through the point S the two lines SK and SV, and let K be the
intersection of MK and SK; V the intersection of MV and SV; A
the intersection of MA and SA (A is the intersection of SV and
MK), and ¼ the intersection of MV and SK; and if through two
of the four points A, K,¼, V, which are not in the same straight
line with M and S, such as K and V, we pass the circumference
of a circle cutting the lines MV, MP, SV, SK in the points O, P,
Q, N; I say that the lines MS, NO, PQ are of the same order."
(By "lines of the same order" Pascal means lines which meet
in the same point or are parallel.) By projecting the figure thus
described upon another plane he is able to state his theorem for
the case where the circle is replaced by any conic section.

173. It must be understood that the "Essay" was only a résumé
of a more extended treatise on conics which, owing partly to
Pascal's extreme youth, partly to the difficulty of publishing
scientific works in those days, and also to his later morbid[108]

interest in religious matters, was never published. Leibniz12

examined a copy of the complete work, and has reported that the
great theorem on the mystic hexagram was made the basis of the
whole theory, and that Pascal had deduced some four hundred
corollaries from it. This would indicate that here was a man
able to take the unconnected materials of projective geometry
and shape them into some such symmetrical edifice as we have

11Œuvres de Pascal, par Brunsehvig et Boutroux, t. I, 252.
12 Chasles, Histoire de la Géométrie, 70.
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to-day. Unfortunately for science, Pascal's early death prevented
the further development of the subject at his hands.

174. In the "Essay" Pascal gives full credit to Desargues, saying
of one of the other propositions, "We prove this property also,
the original discoverer of which is M. Desargues, of Lyons, one
of the greatest minds of this age ... and I wish to acknowledge
that I owe to him the little which I have discovered." This
acknowledgment led Descartes to believe that Pascal's theorem
should also be credited to Desargues. But in the scientific club
which the young Pascal attended in company with his father,
who was also a scientist of some reputation, the theorem went by
the name of 'la Pascalia,' and Descartes's remarks do not seem to
have been taken seriously, which indeed is not to be wondered
at, seeing that he was in the habit of giving scant credit to the
work of other scientific investigators than himself.

175. De la Hire and his work. De la Hire added little to the
development of the subject, but he did put into print much of what
Desargues had already worked out, not fully realizing, perhaps,[109]

how much was his own and how much he owed to his teacher.
Writing in 1679, he says,13 "I have just read for the first time M.
Desargues's little treatise, and have made a copy of it in order
to have a more perfect knowledge of it." It was this copy that
saved the work of his master from oblivion. De la Hire should be
credited, among other things, with the invention of a method by
which figures in the plane may be transformed into others of the
same order. His method is extremely interesting, and will serve
as an exercise for the student in synthetic projective geometry.

13Œuvres de Desargues, t. I, 231.
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It is as follows:Draw two parallel lines, a and b, and select a
point P in their plane. Through any point M of the plane draw a
line meeting a in A and b in B. Draw a line through B parallel
to AP, and let it meet MP in the point M'. It may be shown
that the point M' thus obtained does not depend at all on the
particular ray MAB used in determining it, so that we have set up
a one-to-one correspondence between the points M and M' in the
plane. The student may show that asM describes a point-row,
M' describes a point-row projective to it. AsM describes a conic,
M' describes another conic. This sort of correspondence is called
a collineation. It will be found that the points on the lineb
transform into themselves, as does also the single pointP. Points
on the linea transform into points on the line at infinity. The
student should remove the metrical features of the construction
and take, instead of two parallel linesa and b, any two lines
which may meet in a finite part of the plane. The collineation[110]

is a special one in that the general one has an invariant triangle
instead of an invariant point and line.

176. Descartes and his influence.The history of synthetic
projective geometry has little to do with the work of the great
philosopher Descartes, except in an indirect way. The method
of algebraic analysis invented by him, and the differential and
integral calculus which developed from it, attracted all the
interest of the mathematical world for nearly two centuries
after Desargues, and synthetic geometry received scant attention
during the rest of the seventeenth century and for the greater part
of the eighteenth century. It is difficult for moderns to conceive
of the richness and variety of the problems which confronted the
first workers in the calculus. To come into the possession of a
method which would solve almost automatically problems which
had baffled the keenest minds of antiquity; to be able to derive in
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a few moments results which an Archimedes had toiled long and
patiently to reach or a Galileo had determined experimentally;
such was the happy experience of mathematicians for a century
and a half after Descartes, and it is not to be wondered at that
along with this enthusiastic pursuit of new theorems in analysis
should come a species of contempt for the methods of the
ancients, so that in his preface to his "Méchanique Analytique,"
published in 1788, Lagrange boasts, "One will find no figures in
this work." But at the close of the eighteenth century the field
opened up to research by the invention of the calculus began
to appear so thoroughly explored that new methods and new
objects of investigation began to attract attention. Lagrange[111]

himself, in his later years, turned in weariness from analysis
and mechanics, and applied himself to chemistry, physics, and
philosophical speculations. "This state of mind," says Darboux,14

"we find almost always at certain moments in the lives of the
greatest scholars." At any rate, after lying fallow for almost two
centuries, the field of pure geometry was attacked with almost
religious enthusiasm.

177. Newton and Maclaurin.But in hastening on to the epoch
of Poncelet and Steiner we should not omit to mention the work
of Newton and Maclaurin. Although their results were obtained
by analysis for the most part, nevertheless they have given
us theorems which fall naturally into the domain of synthetic
projective geometry. Thus Newton's "organic method"15 of
generating conic sections is closely related to the method which
we have made use of in Chapter III. It is as follows:If two angles,
AOS and AO'S, of given magnitudes turn about their respective
vertices, O and O', in such a way that the point of intersection,

14 See Ball, History of Mathematics, French edition, t. II, 233.
15 Newton, Principia, lib. i, lemma XXI.
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S, of one pair of arms always lies on a straight line, the point of
intersection, A, of the other pair of arms will describe a conic.
The proof of this is left to the student.

178.Another method of generating a conic is due to Maclaurin.16

The construction, which we also leave for the student to justify,
is as follows: If a triangle C'PQ move in such a way that its
sides, PQ, QC', and C'P, turn around three fixed points, R, A, B,[112]

respectively, while two of its vertices, P, Q, slide along two fixed
lines, CB' and CA', respectively, then the remaining vertex will
describe a conic.

179. Descriptive geometry and the second revival.The
second revival of pure geometry was again to take place at a
time of great intellectual activity. The period at the close of
the eighteenth and the beginning of the nineteenth century is
adorned with a glorious list of mighty names, among which are
Gauss, Lagrange, Legendre, Laplace, Monge, Carnot, Poncelet,
Cauchy, Fourier, Steiner, Von Staudt, Möbius, Abel, and many
others. The renaissance may be said to date from the invention
by Monge17 of the theory ofdescriptive geometry. Descriptive
geometry is concerned with the representation of figures in space
of three dimensions by means of space of two dimensions.
The method commonly used consists in projecting the space
figure on two planes (a vertical and a horizontal plane being
most convenient), the projections being made most simply for
metrical purposes from infinity in directions perpendicular to

16 Maclaurin, Philosophical Transactions of the Royal Society of London,
1735.
17 Monge, Géométrie Descriptive. 1800.
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the two planes of projection. These two planes are then made
to coincide by revolving the horizontal into the vertical about
their common line. Such is the method of descriptive geometry
which in the hands of Monge acquired wonderful generality
and elegance. Problems concerning fortifications were worked
so quickly by this method that the commandant at the military
school at Mézières, where Monge was a draftsman and pupil,
viewed the results with distrust. Monge afterward became
professor of mathematics at Mézières and gathered around him a[113]

group of students destined to have a share in the advancement of
pure geometry. Among these were Hachette, Brianchon, Dupin,
Chasles, Poncelet, and many others.

180. Duality, homology, continuity, contingent relations.
Analytic geometry had left little to do in the way of discovery
of new material, and the mathematical world was ready for the
construction of the edifice. The activities of the group of men
that followed Monge were directed toward this end, and we now
begin to hear of the great unifying notions of duality, homology,
continuity, contingent relations, and the like. The devotees of
pure geometry were beginning to feel the need of a basis for their
science which should be at once as general and as rigorous as
that of the analysts. Their dream was the building up of a system
of geometry which should be independent of analysis. Monge,
and after him Poncelet, spent much thought on the so-called
"principle of continuity," afterwards discussed by Chasles under
the name of the "principle of contingent relations." To get a clear
idea of this principle, consider a theorem in geometry in the
proof of which certain auxiliary elements are employed. These
elements do not appear in the statement of the theorem, and the
theorem might possibly be proved without them. In drawing
the figure for the proof of the theorem, however, some of these



181. Poncelet and Cauchy 139

elements may not appear, or, as the analyst would say, they
become imaginary. "No matter," says the principle of contingent
relations, "the theorem is true, and the proof is valid whether the
elements used in the proof are real or imaginary." [114]

181. Poncelet and Cauchy.The efforts of Poncelet to compel
the acceptance of this principle independent of analysis resulted
in a bitter and perhaps fruitless controversy between him and
the great analyst Cauchy. In his review of Poncelet's great
work on the projective properties of figures18 Cauchy says, "In
his preliminary discourse the author insists once more on the
necessity of admitting into geometry what he calls the 'principle
of continuity.' We have already discussed that principle ... and
we have found that that principle is, properly speaking, only a
strong induction, which cannot be indiscriminately applied to
all sorts of questions in geometry, nor even in analysis. The
reasons which we have given as the basis of our opinion are not
affected by the considerations which the author has developed in
his Traité des Propriétés Projectives des Figures." Although this
principle is constantly made use of at the present day in all sorts
of investigations, careful geometricians are in agreement with
Cauchy in this matter, and use it only as a convenient working
tool for purposes of exploration. The one-to-one correspondence
between geometric forms and algebraic analysis is subject to
many and important exceptions. The field of analysis is much
more general than the field of geometry, and while there may
be a clear notion in analysis to, correspond to every notion in
geometry, the opposite is not true. Thus, in analysis we can deal
with four coördinates as well as with three, but the existence of a
space of four dimensions to correspond to it does not therefore[115]

18 Poncelet, Traité des Propriétés Projectives des Figures. 1822. (See p. 357,
Vol. II, of the edition of 1866.)
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follow. When the geometer speaks of the two real or imaginary
intersections of a straight line with a conic, he is really speaking
the language of algebra.Apart from the algebra involved, it is the
height of absurdity to try to distinguish between the two points
in which a linefails to meet a conic!

182. The work of Poncelet. But Poncelet's right to the title
"The Father of Modern Geometry" does not stand or fall with
the principle of contingent relations. In spite of the fact that he
considered this principle the most important of all his discoveries,
his reputation rests on more solid foundations. He was the first
to study figuresin homology, which is, in effect, the collineation
described in § 175, where corresponding points lie on straight
lines through a fixed point. He was the first to give, by means
of the theory of poles and polars, a transformation by which an
element is transformed into another of a different sort. Point-
to-point transformations will sometimes generalize a theorem,
but the transformation discovered by Poncelet may throw a
theorem into one of an entirely different aspect. The principle
of duality, first stated in definite form by Gergonne,19 the editor
of the mathematical journal in which Poncelet published his
researches, was based by Poncelet on his theory of poles and
polars. He also put into definite form the notions of the infinitely
distant elements in space as all lying on a plane at infinity.

183. The debt which analytic geometry owes to synthetic
geometry.The reaction of pure geometry on analytic geometry[116]

is clearly seen in the development of the notion of theclassof
a curve, which is the number of tangents that may be drawn

19 Gergonne,Annales de Mathématiques, XVI, 209. 1826.
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from a point in a plane to a given curve lying in that plane. If a
point moves along a conic, it is easy to show—and the student
is recommended to furnish the proof—that the polar line with
respect to a conic remains tangent to another conic. This may be
expressed by the statement that the conic is of the second order
and also of the second class. It might be thought that if a point
moved along a cubic curve, its polar line with respect to a conic
would remain tangent to another cubic curve. This is not the
case, however, and the investigations of Poncelet and others to
determine the class of a given curve were afterward completed
by Plücker. The notion of geometrical transformation led also
to the very important developments in the theory of invariants,
which, geometrically, are the elements and configurations which
are not affected by the transformation. The anharmonic ratio of
four points is such an invariant, since it remains unaltered under
all projective transformations.

184. Steiner and his work.In the work of Poncelet and his con-
temporaries, Chasles, Brianchon, Hachette, Dupin, Gergonne,
and others, the anharmonic ratio enjoyed a fundamental rôle. It
is made also the basis of the great work of Steiner,20 who was the
first to treat of the conic, not as the projection of a circle, but as
the locus of intersection of corresponding rays of two projective
pencils. Steiner not only related to each other, in one-to-one[117]

correspondence, point-rows and pencils and all the other funda-
mental forms, but he set into correspondence even curves and
surfaces of higher degrees. This new and fertile conception gave
him an easy and direct route into the most abstract and difficult
regions of pure geometry. Much of his work was given without

20 Steiner, Systematische Ehtwickelung der Abhängigkeit geometrischer
Gestalten von einander. 1832.
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any indication of the methods by which he had arrived at it, and
many of his results have only recently been verified.

185. Von Staudt and his work. To complete the theory of
geometry as we have it to-day it only remained to free it from
its dependence on the semimetrical basis of the anharmonic
ratio. This work was accomplished by Von Staudt,21 who
applied himself to the restatement of the theory of geometry in a
form independent of analytic and metrical notions. The method
which has been used in Chapter II to develop the notion of four
harmonic points by means of the complete quadrilateral is due
to Von Staudt. His work is characterized by a most remarkable
generality, in that he is able to discuss real and imaginary forms
with equal ease. Thus he assumes a one-to-one correspondence
between the points and lines of a plane, and defines a conic
as the locus of points which lie on their corresponding lines,
and a pencil of rays of the second order as the system of lines
which pass through their corresponding points. The point-row
and pencil of the second order may be real or imaginary, but his
theorems still apply. An illustration of a correspondence of this
sort, where the conic is imaginary, is given in § 15 of the first
chapter. In defining conjugate imaginary points on a line, Von[118]

Staudt made use of an involution of points having no double
points. His methods, while elegant and powerful, are hardly
adapted to an elementary course, but Reye22 and others have
done much toward simplifying his presentation.

21 Von Staudt, Geometrie der Lage. 1847.
22 Reye, Geometrie der Lage. Translated by Holgate, 1897.
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186. Recent developments.It would be only confusing to the
student to attempt to trace here the later developments of the
science of protective geometry. It is concerned for the most part
with curves and surfaces of a higher degree than the second.
Purely synthetic methods have been used with marked success
in the study of the straight line in space. The struggle between
analysis and pure geometry has long since come to an end. Each
has its distinct advantages, and the mathematician who cultivates
one at the expense of the other will never attain the results that
he would attain if both methods were equally ready to his hand.
Pure geometry has to its credit some of the finest discoveries
in mathematics, and need not apologize for having been born.
The day of its usefulness has not passed with the invention of
abridged notation and of short methods in analysis. While we
may be certain that any geometrical problem may always be
stated in analytic form, it does not follow that that statement will
be simple or easily interpreted. For many mathematicians the
geometric intuitions are weak, and for such the method will have
little attraction. On the other hand, there will always be those for
whom the subject will have a peculiar glamor—who will follow
with delight the curious and unexpected relations between the[119]

forms of space. There is a corresponding pleasure, doubtless,
for the analyst in tracing the marvelous connections between
the various fields in which he wanders, and it is as absurd to
shut one's eyes to the beauties in one as it is to ignore those in
the other. "Let us cultivate geometry, then," says Darboux,23

"without wishing in all points to equal it to its rival. Besides, if
we were tempted to neglect it, it would not be long in finding
in the applications of mathematics, as once it has already done,
the means of renewing its life and of developing itself anew. It
is like the Giant Antaeus, who renewed, his strength by touching
the earth."

23 Ball, loc. cit. p. 261.
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