\PGset[0.8em] \begin{picture}(12,8) % secant through one of the points of intersection so that % the two chords are in the ratio m:n % r1 = 2.7 % r2 = 3.5 % Ellipse: u = 3.7 v = 4.5 a = 2.7 b = 2.7 phi = 0.0 Grad \qbezier(6.4, 4.5)(6.4, 5.6184)(5.6092, 6.4092) \qbezier(5.6092, 6.4092)(4.8184, 7.2)(3.7, 7.2) \qbezier(3.7, 7.2)(2.5816, 7.2)(1.7908, 6.4092) \qbezier(1.7908, 6.4092)(1.0, 5.6184)(1.0, 4.5) \qbezier(1.0, 4.5)(1.0, 3.3816)(1.7908, 2.5908) \qbezier(1.7908, 2.5908)(2.5816, 1.8)(3.7, 1.8) \qbezier(3.7, 1.8)(4.8184, 1.8)(5.6092, 2.5908) \qbezier(5.6092, 2.5908)(6.4, 3.3816)(6.4, 4.5) % Ellipse: u = 8.2 v = 4.5 a = 3.5 b = 3.5 phi = 0.0 Grad \qbezier(11.7, 4.5)(11.7, 5.9497)(10.6749, 6.9749) \qbezier(10.6749, 6.9749)(9.6497, 8.0)(8.2, 8.0) \qbezier(8.2, 8.0)(6.7503, 8.0)(5.7251, 6.9749) \qbezier(5.7251, 6.9749)(4.7, 5.9497)(4.7, 4.5) \qbezier(4.7, 4.5)(4.7, 3.0503)(5.7251, 2.0251) \qbezier(5.7251, 2.0251)(6.7503, 1.0)(8.2, 1.0) \qbezier(8.2, 1.0)(9.6497, 1.0)(10.6749, 2.0251) \qbezier(10.6749, 2.0251)(11.7, 3.0503)(11.7, 4.5) % O = 3.7, 4.5 % O' = 8.2, 4.5 % P = 5.399, 6.599 % A = 5.2, 4.5 \dashline[80]{0.2}(3.7,4.5)(8.2,4.5) % OO' \dashline[80]{0.2}(5.399,6.599)(5.2,4.5) % PA, m = -10.548 \dashline[80]{0.2}(2.427,6.881)(11.345,6.035) % GF \dashline[80]{0.2}(3.7,4.5)(3.912,6.74) % OD \dashline[80]{0.2}(8.2,4.5)(8.372,6.317) % O'E \put( 1.6, 6.9){$\scriptstyle G$} \put( 3.6, 7.4){$\scriptstyle D$} \put( 5.1, 7.0){$\scriptstyle P$} \put( 8.0, 6.5){$\scriptstyle E$} \put(11.4, 5.8){$\scriptstyle F$} \put( 3.0, 4.2){$\scriptstyle O$} \put( 4.9, 3.8){$\scriptstyle A$} \put( 8.3, 4.2){$\scriptstyle O'$} \end{picture} \PGrestore